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Abstract representations (Casey and Westner 2000) into one frame-
_ o work. The described method has close relation to other clus-
This paper presents a statistical approach to sound texturgering methods based on pair-wise distances, such as Normal-

modeling based on a singular value analysis of spectral feaized Cuts and graph partitioning or spectral clustering meth-
tures or an eigenvector analysis of their similarity matrix. Us- gds.

ing dimension reduction techniques we perform grouping of
the signal into similar sounding audio segments that are re- .
current in time. The method allows an automatic segmenta2 ~ Analysis Method
tion of audio signal into larger groups of similar sounding
audio objects and can be used for visualization purposes, au- The method presented in this paper explores the relation
dio texture synthesis and creative audio manipulations. W&etween Singular Value Decomposition (SVD) of spectral fea-
present a principled approach that brings methods such agures and Eigenvector analysis of recurrence (also called self-
audio similarity analysis and spectral audio basis represen-similarity or pair-wise spectral distance) matrix. In the first
tations into one framework. method, SVD analysis is used to represent the data (spec-
tral features) in terms of three matrices, which can be inter-
. preted as audio basis vectors, their normalized expansion co-
1 Introduction efficients and corresponding variances. The second method
consists of finding the eigenvectors of the recurrence matrix,
Many audio texture and even musical pieces can be conyhich can be used for dimension reduction of the matrix.
sidered as an alternating juxtaposition of different sound typem both methods, the first expansion coefficients or firdt
or objects. Determining segments in an audio signal thagigenvectors are used for clustering.
correspond to a coherent object (especially in unsupervised e will show that both methods are equivalent when the
manner) is important for visualization purposes, audio teXrecurrence matrix can be written as a dot product of the spec-
ture synthesis and creative audio manipulations. tral features. In the case when the distance measure is more
We are particularly interested in improving the segmentacomplicated, one can still show that for the case of a sym-
tion of audio for sound texture synthesis using sound grainsmetric positive definite recurrence matrix, the distances can
Lu et al. (2002), have developed an audio texture analysispe represented as a dot product of some (possibly non-linear)
synthesis system that uses the self-similarity of a sound ovelinction of the features. Even if the function is unknown,

time to create new texturally similar sounds. It is hoped thakjustering can be performed directly on the recurrence ma-
by singular value clustering as presented here, synthesizegy.

sonic textures that accurately reflect the sonic object group-
ing of the original sound can be produced.

We present an approach that links methods of self-similarity
analysis (Foote and Cooper 2001) and spectral audio basis



2.1 Audio Feature Representation ~ Recurrance Mairix

The first step in our analysis is parameterization of the
time evolving sound. The sound is windowed typically with
awindow size of 256 samples at a sampling rate of 18,000 Hz.
A cepstral analysis is completed for each windowed segment,
and the first few cepstral coefficients are used as a feature
vector for that segment of sound.

2.2 Recurrence Analysis

Once we have determined our feature vectors, we create
a recurrence matrix, which shows a measurement of the sim-
ilarity between each pair of feature vectors. This distance
measure can be calculated using different distance metrics.
Here, we use the normalized dot product of the feature vec-
tors (Foote and Cooper 2001). dfis the distance between
the feature vectorX; and.X; at frames andj, then

Figure 1: Similarity matrix of example sound.

d(i,j) = (X0, X)) (1) Calculating the SVD consists of finding the eigenvalues

XX and eigenvectors cKX” and X”X. The eigenvectors of
_ _ XTX make up the columns of , the eigenvectors XX
Here (X;, X;) is the dot product defined d(;||X|cos, up ; genv

hered is th le between th A dl is th make up the columns df. Also, the singular values i
Wf ;re Tlf\ Z_a?g € between evetc.orls, Gk |Ihs ttehnorm rordye square roots of eigenvalues fra&X” or X”X. The
of A:. 'NIS distance measurement 1S farge when the vec Or§ingular values are the diagonal entries of thenatrix and

are of high magnitude and similar, Because of the normallzaére arranged in descending order.

tion, low magnitude and similar vectors also produce a large For our purposes, SVD has two important properties: it

me?surge{mfnt).(A)s(sun}ng atlhmatrlx of normallzte_d (_:iata COlilm'f'r:lctorizes the data into combinations of the column vedibrs
vec (t))rs E [ 1§) 2—“ng“])’( e'trr? <]:)u‘rAre_nc(:ie’m.a rixin eq. (1) using expansion coefficients that are rowsvof. Moreover,
can be writtén a%) = » Wi ij = d(i, J). the relative “significance” of each column ®f; times row of

For each time S?gr.“e.”" theS? dlst_ance magnitude vglu T combination is given by the corresponding valuedof
are plotted on an similarity matrix. Figure 1 shows a sim-

ilarity matrix of an example sound. We will be using this . .
similarity matrix graph as a basis for one of the methods for2-4 ~Relation between the Features SVD and Sim-

partitioning the sound into perceptually similar groups. ilarity Matrix Eigenvectors
) . Using SVD ofX, and denoting by, = A, V7, the ex-
2.3 Singular Value Decomposition pansion coefficients aK we write X = US,. Due to or-

X Tt .
Singular value decomposition takes a rectangular matri>£honorm"’IIIty of the vectort/" U = Ithe recurrence ma_tr!x
of feature vectors (defined &, whereX is an x p matrix) of X equals to the recurrence of the expansion coefficients

T : X R ) i
in which then rows represents the cepstral coefficients, and[; ? SwaI. Since most ofotlhe mfc()jrmagon 's_g];r;;mid In
thep columns represents the time sequence. the first few components, a data reduced versi nbe

obtained by using only the first rows 8f.. Moreover, one
Xpxp = UanAnxpVpr ) shou!d_ note that due to orthonormality ®f, the expansion
coefficients ofX (rows of S,) are the transposed eigenvec-
where tors of the matrixD.
UTU = s, and VIV =1,,,,. (3)



Property |I: EigenvectorsS, of D are transpose of the 3 Clustering Methods

expansion coefficients &, S; = S7.
Proof: Let us denote by, the matrix of eigenvectors,

We propose two alternative methods for audio segmenta-

(and similarly forS;). From the arguments above one cantion:

write D = SI'S,.. DST = ST'S,ST). We need to prove that

the expression in brackets is diagonal matrix. Ustjg=
A, VT andVTV =Twe getS, ST = A, VIVA, = A2

In case when the distance measure is more complicated,
one can still show that for the case of a symmetric positive
definite matrixD, the distances can be represented as a dot

product of some (possibly non-linear) functig(X;). Even

if the function f(.) is unknown, clustering can be performed

directly onD, as shown below.

2.5 Markov Normalization

Converting the distancdd into Markov probability ma-

trix puts it in a generative framework. (Lu, Li, Wenyin, and
Zhang 2002) This matrix represents statistics of the data in

terms of probability of transition from framego ;.
We write
. d(X;, X;)
P = P(jli) = =1, (4)
J ( | ) E]‘ d(Xl,X])

This normalizaiton takes care of the probability requiremenii

thaty . P(j|i) =1, i.e. that being in frame (frame index)
we will eventually move to some other frame number

1. In the first method, the daf& or some possibly non-
linear mapping of the vectotX is used to get a matrix
f(X) = [f(X1), f(X2),...]. The choice of the map-
ping function is such that similarity relation between
sound segments could be represented as a dot product
D = f(X)T f(X). SVD analysis is applied tfi(X) to
find factorisation off (X) in terms of “basis” and “ex-
pansion” matricesf(X) = U;S;. The values of the
first k£ rows of S will be used for clustering.

2. The second method consist of finding the eigenvec-
tors of the distance matrik. The firstk eigenvectors
of D, DS; = SyA are used for clustering. As was
shown in previous section, both methods result in the
same vectors, transposed. Accordingly, we shall de-
note the SVD expansion coefficieri of f(X) and
transposed eigenvectdsg of the matrixD by one no-
tationS.

The segmentation is performed by clustering the values
of the firstk row vectors ofS. The choice of the first rows is
n correspondence to the ordering of the eigenvalues, sorted
from high to low. The clustering can be done using methods
such as k-means.

In the Markov case, the eigenvector analysis is done on ¢, ihgtance, partitioning a sound into two groups can be

the eigenvectors of the transition matix A Markov ma-
trix can be written a® = Z~'D, with affinity matrix Z =
diag(}_; D;;). We denote by, the right eigenvectorB S, =
AS, and show the following

Property Il: The eigenvector§, of a symmetrically nor-
malized matrixQ = Z~/?2DZ~'/2, areS, = Z'/%S,,

Proof: PS, = \S, can be written a&~'DS,, = \S,.
Multiplying on the left byZ'/2 givesZ~'/?2D S, = \Z'/23,,.
Using S, = Z~1/25, givesZ~1/2DZ~1/25, = \S,, i.e. S,

is shown to be the eigenvector matrix of the symmetric matrix

Q

This shows that the Markov eigenvectdss are scaled

version of eigenvectorS, of the symmetrically normalized
matrix. Accordingly, ifD = f(X)7 f(X), one can achieve
same normalization by doing an SVD directly on a normal-

ized dataZ ~1/2 f(X).

accomplished using = 1, i.e. one expansion coefficient
and finding a decision threshold that partitions that coeffi-
cient (row of S) into two groups. Every time instance has
a coefficient value that maybe above or below threshold and
accordingly it is assigned to one or the other group. Once the
assignment is done, a pointer to the original sound is used to
mark a sound class to which the particular frame belongs. An
example of clustering into three sound types using k-means
is shown in the results section.

Going back to the sound itself, each frame at time index

is assigned to a cluster to which the appropriate coefficients of
S at framei belongs. Sequences of consecutive sound frames
are joined together to compose a single macro-grain or a vari-
ant belonging to a particular sound type.



4 Results Markov matrix is a unity vector, which does not allow clus-
tering.
In our experiments we analyzed several natural and mu-

sical sound that had alternating segments of different tim-
bre. Figure 2 show the second and third eigenvectors of a % )
Markov matrix for an example sound that contained three dis- el
tinct sound types. One can see that each of the eigenvectors z ;%w ¥
- second eigenvector ff ::x(:; i"x !
, third eigenvector Figure 3: Second and third eigenvector showing clustering.
= = o = = 5 Conclusion
Figure 2: second and third eigenvectors. Our approach to sound texture modeling involves separat-

ing sound into sonic objects that are grouped by their similar-
o ) ) ity to each other. Here we have demonstrated that segment-
has two areas of distinct values. Plotting the two eigenveciyg of sound can be equivalently achieved by a singular value
tors against each other, i.e plotting them as coordinates in scomposition of spectral features or eigenvector analysis of
two dimensional space, reveals two or possibly three clusters; imilarity matrix. This analysis provides an unsupervised
Figure 3 shows these clusters of eigenvector values. method of grouping similar sounds that may be applicable to
sound texture synthesis systems, audio summary generation,
4.1 Comparisonto Similarity Matrix Eigenvec- as well as other creative audio manipulations. Questions such
tor Clustering as automatic determining of the number of clusters (sound
objects), including additional features such as pitch related

Clustering ofD using eigenvector®S; = SyAq gives  distances or learning distance functions from examples are
sometimes different results compared to clustering using thgypjects for future research.

Markov matrix eigenvector®S, = S,A,. Only in case

when Z~! is constant, i.e. all points have the same total
distance from all other points, the two eigenvectors becomé€ferences
identical. This may occur when all clusters have similar in-

ter and intra cluster distances with equal number of points in Casey, M. and W. Westner (2000). Separation of mixed audio

h sources by independent subspace analysBrdneedings of
eacl « claimed in the I Hat Mark _— the ICMC, pp. 154-161. ICMA.
tis claimed in the literature that Markov normalization Foote, J. and M. Cooper (2001). Visualizing musical structure

gives significantly better results for image grouping. (Shi and and rhythm via self-similarity. IProceedings of the ICMC

Malik 2000) In our experiments we did not reach any con- pp. 419-422. ICMA.
clusive results concerning advantage of either method. One |, | s |j L. Wenyin, and H. Zhang (2002). Audio textures.
should note that in the Markov case the clustering should be International Conference on Acoustics, Speech, and Signal

done on the second largest (and possibly subsequent) eigen-  Processing1761-1764.

vectors, i.e. without taking into accound the first eigenvector. Shi, J. and J. Malik (2000). Normalized cuts and image segmenta-
This is due to the fact that that the largest first eigenvector of tion. IEEE Trans. Pattern Anal. Mach. Intell. 22), 888—-905.



