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Abstract

This paper presents a statistical approach to sound texture
modeling based on a singular value analysis of spectral fea-
tures or an eigenvector analysis of their similarity matrix. Us-
ing dimension reduction techniques we perform grouping of
the signal into similar sounding audio segments that are re-
current in time. The method allows an automatic segmenta-
tion of audio signal into larger groups of similar sounding
audio objects and can be used for visualization purposes, au-
dio texture synthesis and creative audio manipulations. We
present a principled approach that brings methods such as
audio similarity analysis and spectral audio basis represen-
tations into one framework.

1 Introduction

Many audio texture and even musical pieces can be con-
sidered as an alternating juxtaposition of different sound types
or objects. Determining segments in an audio signal that
correspond to a coherent object (especially in unsupervised
manner) is important for visualization purposes, audio tex-
ture synthesis and creative audio manipulations.

We are particularly interested in improving the segmenta-
tion of audio for sound texture synthesis using sound grains.
Lu et al. (2002), have developed an audio texture analysis-
synthesis system that uses the self-similarity of a sound over
time to create new texturally similar sounds. It is hoped that
by singular value clustering as presented here, synthesized
sonic textures that accurately reflect the sonic object group-
ing of the original sound can be produced.

We present an approach that links methods of self-similarity
analysis (Foote and Cooper 2001) and spectral audio basis

representations (Casey and Westner 2000) into one frame-
work. The described method has close relation to other clus-
tering methods based on pair-wise distances, such as Normal-
ized Cuts and graph partitioning or spectral clustering meth-
ods.

2 Analysis Method

The method presented in this paper explores the relation
between Singular Value Decomposition (SVD) of spectral fea-
tures and Eigenvector analysis of recurrence (also called self-
similarity or pair-wise spectral distance) matrix. In the first
method, SVD analysis is used to represent the data (spec-
tral features) in terms of three matrices, which can be inter-
preted as audio basis vectors, their normalized expansion co-
efficients and corresponding variances. The second method
consists of finding the eigenvectors of the recurrence matrix,
which can be used for dimension reduction of the matrix.
In both methods, the firstk expansion coefficients or firstk
eigenvectors are used for clustering.

We will show that both methods are equivalent when the
recurrence matrix can be written as a dot product of the spec-
tral features. In the case when the distance measure is more
complicated, one can still show that for the case of a sym-
metric positive definite recurrence matrix, the distances can
be represented as a dot product of some (possibly non-linear)
function of the features. Even if the function is unknown,
clustering can be performed directly on the recurrence ma-
trix.



2.1 Audio Feature Representation

The first step in our analysis is parameterization of the
time evolving sound. The sound is windowed typically with
a window size of 256 samples at a sampling rate of 18,000 Hz.
A cepstral analysis is completed for each windowed segment,
and the first few cepstral coefficients are used as a feature
vector for that segment of sound.

2.2 Recurrence Analysis

Once we have determined our feature vectors, we create
a recurrence matrix, which shows a measurement of the sim-
ilarity between each pair of feature vectors. This distance
measure can be calculated using different distance metrics.
Here, we use the normalized dot product of the feature vec-
tors (Foote and Cooper 2001). Ifd is the distance between
the feature vectorsXi andXj at framesi andj, then

d(i, j) =
〈Xi, Xj〉
‖Xi‖‖Xj‖

. (1)

Here 〈Xi, Xj〉 is the dot product defined as|Xi||Xj |cosθ,
whereθ is the angle between the vectors, and|Xi| is the norm
of Xi. This distance measurement is large when the vectors
are of high magnitude and similar, Because of the normaliza-
tion, low magnitude and similar vectors also produce a large
measurement. Assuming a matrix of normalized data column
vectorsX = [X1X2...Xp], the recurrence matrix in eq. (1)
can be written asD = XT X, with Dij = d(i, j).

For each time segment, these distance magnitude values
are plotted on an similarity matrix. Figure 1 shows a sim-
ilarity matrix of an example sound. We will be using this
similarity matrix graph as a basis for one of the methods for
partitioning the sound into perceptually similar groups.

2.3 Singular Value Decomposition

Singular value decomposition takes a rectangular matrix
of feature vectors (defined asX, whereX is an × p matrix)
in which then rows represents the cepstral coefficients, and
thep columns represents the time sequence.

Xn×p = Un×nΛn×pVT
p×p (2)

where
UT U = In×n, and VT V = Ip×p. (3)
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Figure 1: Similarity matrix of example sound.

Calculating the SVD consists of finding the eigenvalues
and eigenvectors ofXXT andXT X. The eigenvectors of
XT X make up the columns ofV , the eigenvectors ofXXT

make up the columns ofU. Also, the singular values inΛ
are square roots of eigenvalues fromXXT or XT X. The
singular values are the diagonal entries of theΛ matrix and
are arranged in descending order.

For our purposes, SVD has two important properties: it
factorizes the data into combinations of the column vectorsU
using expansion coefficients that are rows ofVT . Moreover,
the relative “significance” of each column ofUi times row of
VT

i combination is given by the corresponding values ofΛ.

2.4 Relation between the Features SVD and Sim-
ilarity Matrix Eigenvectors

Using SVD ofX, and denoting bySx = ΛxVT , the ex-
pansion coefficients ofX we write X = USx. Due to or-
thonormality of the vectorsUT U = I the recurrence matrix
of X equals to the recurrence of the expansion coefficients
D = ST

x Sx. Since most of the information is contained in
the first few components, a data reduced version ofD can be
obtained by using only the first rows ofSx. Moreover, one
should note that due to orthonormality ofV, the expansion
coefficients ofX (rows ofSx) are the transposed eigenvec-
tors of the matrixD.



Property I: EigenvectorsSd of D are transpose of the
expansion coefficients ofX, Sd = ST

x .
Proof: Let us denote bySx the matrix of eigenvectorsSx

(and similarly forSd). From the arguments above one can
write D = ST

x Sx. DST
x = ST

x SxST
x ). We need to prove that

the expression in brackets is diagonal matrix. UsingSx =
ΛxVT andVT V = I we getSxST

x = ΛxVT VΛx = Λ2
x.

In case when the distance measure is more complicated,
one can still show that for the case of a symmetric positive
definite matrixD, the distances can be represented as a dot
product of some (possibly non-linear) functionf(Xi). Even
if the functionf(.) is unknown, clustering can be performed
directly onD, as shown below.

2.5 Markov Normalization

Converting the distancesD into Markov probability ma-
trix puts it in a generative framework. (Lu, Li, Wenyin, and
Zhang 2002) This matrix represents statistics of the data in
terms of probability of transition from framesi to j.

We write

Pij = P (j|i) =
d(Xi, Xj)∑
j d(Xi, Xj)

. (4)

This normalizaiton takes care of the probability requirement
that

∑
j P (j|i) = 1, i.e. that being in framei (frame indexi)

we will eventually move to some other frame numberj.
In the Markov case, the eigenvector analysis is done on

the eigenvectors of the transition matrixP. A Markov ma-
trix can be written asP = Z−1D, with affinity matrixZ =
diag(

∑
j Dij). We denote bySp the right eigenvectorsPSp =

λSp and show the following
Property II: The eigenvectorsSq of a symmetrically nor-

malized matrixQ = Z−1/2DZ−1/2, areSq = Z1/2Sp.
Proof: PSp = λSp can be written asZ−1DSp = λSp.

Multiplying on the left byZ1/2 givesZ−1/2DSp = λZ1/2Sp.
UsingSp = Z−1/2Sq givesZ−1/2DZ−1/2Sq = λSq, i.e. Sq

is shown to be the eigenvector matrix of the symmetric matrix
Q.

This shows that the Markov eigenvectorsSp are scaled
version of eigenvectorsSq of the symmetrically normalized
matrix. Accordingly, ifD = f(X)T f(X), one can achieve
same normalization by doing an SVD directly on a normal-
ized dataZ−1/2f(X).

3 Clustering Methods

We propose two alternative methods for audio segmenta-
tion:

1. In the first method, the dataX or some possibly non-
linear mapping of the vectorsX is used to get a matrix
f(X) = [f(X1), f(X2), ...]. The choice of the map-
ping function is such that similarity relation between
sound segments could be represented as a dot product
D = f(X)T f(X). SVD analysis is applied tof(X) to
find factorisation off(X) in terms of “basis” and “ex-
pansion” matricesf(X) = UfSf . The values of the
first k rows ofSf will be used for clustering.

2. The second method consist of finding the eigenvec-
tors of the distance matrixD. The firstk eigenvectors
of D, DSd = SdΛ are used for clustering. As was
shown in previous section, both methods result in the
same vectors, transposed. Accordingly, we shall de-
note the SVD expansion coefficientsSf of f(X) and
transposed eigenvectorsST

d of the matrixD by one no-
tationS.

The segmentation is performed by clustering the values
of the firstk row vectors ofS. The choice of the first rows is
in correspondence to the ordering of the eigenvalues, sorted
from high to low. The clustering can be done using methods
such as k-means.

For instance, partitioning a sound into two groups can be
accomplished usingk = 1, i.e. one expansion coefficient
and finding a decision threshold that partitions that coeffi-
cient (row ofS) into two groups. Every time instance has
a coefficient value that maybe above or below threshold and
accordingly it is assigned to one or the other group. Once the
assignment is done, a pointer to the original sound is used to
mark a sound class to which the particular frame belongs. An
example of clustering into three sound types using k-means
is shown in the results section.

Going back to the sound itself, each frame at time indexi
is assigned to a cluster to which the appropriate coefficients of
S at framei belongs. Sequences of consecutive sound frames
are joined together to compose a single macro-grain or a vari-
ant belonging to a particular sound type.



4 Results

In our experiments we analyzed several natural and mu-
sical sound that had alternating segments of different tim-
bre. Figure 2 show the second and third eigenvectors of a
Markov matrix for an example sound that contained three dis-
tinct sound types. One can see that each of the eigenvectors
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Figure 2: second and third eigenvectors.

has two areas of distinct values. Plotting the two eigenvec-
tors against each other, i.e plotting them as coordinates in a
two dimensional space, reveals two or possibly three clusters.
Figure 3 shows these clusters of eigenvector values.

4.1 Comparison to Similarity Matrix Eigenvec-
tor Clustering

Clustering ofD using eigenvectorsDSd = SdΛd gives
sometimes different results compared to clustering using the
Markov matrix eigenvectorsPSp = SpΛp. Only in case
when Z−1 is constant, i.e. all points have the same total
distance from all other points, the two eigenvectors become
identical. This may occur when all clusters have similar in-
ter and intra cluster distances with equal number of points in
each.

It is claimed in the literature that Markov normalization
gives significantly better results for image grouping. (Shi and
Malik 2000) In our experiments we did not reach any con-
clusive results concerning advantage of either method. One
should note that in the Markov case the clustering should be
done on the second largest (and possibly subsequent) eigen-
vectors, i.e. without taking into accound the first eigenvector.
This is due to the fact that that the largest first eigenvector of

Markov matrix is a unity vector, which does not allow clus-
tering.
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Figure 3: Second and third eigenvector showing clustering.

5 Conclusion

Our approach to sound texture modeling involves separat-
ing sound into sonic objects that are grouped by their similar-
ity to each other. Here we have demonstrated that segment-
ing of sound can be equivalently achieved by a singular value
decomposition of spectral features or eigenvector analysis of
a similarity matrix. This analysis provides an unsupervised
method of grouping similar sounds that may be applicable to
sound texture synthesis systems, audio summary generation,
as well as other creative audio manipulations. Questions such
as automatic determining of the number of clusters (sound
objects), including additional features such as pitch related
distances or learning distance functions from examples are
subjects for future research.
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