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Understanding and modeling human experience and
emotional response when listening to music are impor-
tant for better understanding of the stylistic choices in
musical composition. In this work, we explore the rela-
tion of audio signal structure to human perceptual and
emotional reactions. Memory, repetition, and anticipa-
tory structure have been suggested as some of the
major factors in music that might influence and possibly
shape these responses. The audio analysis was con-
ducted on two recordings of an extended contemporary
musical composition by one of the authors. Signal prop-
erties were analyzed using statistical analyses of signal
similarities over time and information theoretic mea-
sures of signal redundancy. They were then compared to
Familiarity Rating and Emotional Force profiles, as
recorded continually by listeners hearing the two ver-
sions of the piece in a live-concert setting. The analysis
shows strong evidence that signal properties and
human reactions are related, suggesting applications of
these techniques to music understanding and music
information-retrieval systems.

Introduction

The question of style in music is commonly related, both
qualitatively and quantitatively, to the presence of various
factors that shape human experience of a musical work in a
manner that is mostly unrelated to musical rules or other
learned factors that might be specific to a particular musical
“language.” For instance, music of different styles can be

composed using very similar musical rules, with the differ-
ence being in the way the compositional planning and design
are made and on the choice of musical materials. The percep-
tion of musical materials might be influenced by a multitude
of factors, which might include memorization, anticipation,
perception of sound color or orchestration qualities (to be
referred to as “timbre”), and many more. Determining
these properties from musical recordings seems a formidable
problem, still largely unsolved. In this article, we consider
the goal of quantifying signal properties in relation to the
perception of musical affect. Accordingly, it is hoped that the
methods developed here will contribute to the understanding
and modeling of specific styles and stylistics in general.

The current work is based on a project that attempts to
explore structural and affective aspects of human experience
over time when listening to a musical work. The experi-
ments were carried out on a contemporary musical piece,
The Angel of Death by Roger Reynolds for piano, chamber
orchestra, and computer-processed sound, in a live-concert
setting. The experiment consisted of collecting continuous
ratings on two scales: Familiarity and Emotional Force. For
the Familiarity Rating (FR) scale, listeners were to continu-
ally estimate how familiar what they were currently hearing
was to anything they had heard from the beginning of the
piece on a scale from “Completely New” to “Very Familiar.”
For the Emotional Force (EF) scale, they were to continually
rate the force of their emotional reaction to the piece at each
moment on a scale from “Very Weak” to “Very Strong.” As
a result, the obtained audio recordings and listener responses
were aligned in time. This allowed us, among other things,
to test various signal-information-processing methods in
relation to human reactions. A preliminary report of the
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project was presented in McAdams, Smith, Vieillard,
Bigand, and Reynolds (2002).

Relatively few empirical studies of complete musical
works have addressed the reaction of listeners across time.
These works mostly relate the experience of musical emo-
tions to psychophysiological responses when listening to
tonal music (e.g., Krumhansl, 1997). To the best of our
knowledge, this is the first attempt to relate human experi-
ence to statistical properties measured directly on the
acoustic signal. The two questions investigated in the work
are whether signal similarity grouping and the predictabil-
ity structure of signal features could be related to familiarity
and emotional content of an audio signal, respectively.
The basic assumptions were that global spectral
similarity should be related to human familiarity judgments
while the local anticipation structure (i.e., the predictability
of signal features on a short time scale) might be related to
the emotional affect.

The signal similarity was evaluated in terms of groupings
within a spectral similarity matrix across time (also called a
signal recurrence matrix) using matrix-partitioning methods.
As appropriate features, we used spectral envelopes that
were estimated from short signal segments in a time-varying
manner, represented by low-order cepstral coefficients. The
similarity was obtained using a Euclidian distance or
dot product between normalized cepstral feature vectors.
Partitioning of the similarity matrix by singular value de-
composition results in a vector that represents plausible
similarity grouping structures. This vector was compared to
mean FR profiles produced by the listeners.

The signal predictability was evaluated using the same
cepstral feature vector sequences. The predictability was
measured in terms of Information Rate (IR), a measure that
represents the reduction of uncertainty that an information-
processing system achieves when predicting future values of
a stochastic process based on its past. Using a decorrelation
procedure, the sequence of feature vectors is transformed
into an alternative representation in which it can be regarded
as a sum of approximately independent, time-varying expan-
sion coefficients in an appropriate feature basis. The IR of a
vector process may be computed then from the sum of the
IRs of the individual components (described later).

An additional signal feature that was employed for the es-
timation of EF was signal Energy (E). Both IR and E were
compared separately to mean listener EF profiles. Moreover,
a combined estimate of the two features was obtained using
nonnegative least squares regression over 1-min time seg-
ments. The weights of the regression, being positive values,
might be considered as an indication for the relative impor-
tance of IR and E for EF estimation.

The structure of the article is as follows: After a brief re-
view of psychological research on human emotional experi-
ence when listening to music, we describe the structure of
the musical piece that was especially composed for and used
in the experiments. Next, we present the main methods of
signal analysis, with some mathematical details deferred
until the Appendix to not obscure the focus of the article.

The amount of fit between FR, EF, and the various signal-
analysis methods is presented. Possible applications and fu-
ture research directions are presented in the final discussion.

Psychological Research

In the realm of tonal music, several approaches to the
evolution of emotional experience have been used.
Krumhansl (1997) related the experience of musical emo-
tions to psychophysiological responses. Sloboda and
Lehmann (2001) studied listeners’ perceptions of emotional-
ity in reaction to different interpretations of a Chopin Pre-
lude. Schubert (1996) developed techniques for two-
dimensional, continuous response to emotional aspects of
music. Fredericskon (1995) used a continuous-response
method to track the online evolution of perceived tension.

The study on which the present analysis is based
(McAdams et al., 2002) recorded continuous responses by
listeners in a live concert as they heard The Angel of Death
for piano, chamber orchestra, and computer-processed
sound by Roger Reynolds. Two response scales were used:
FR and EF. FR concerned perceptual and cognitive aspects
of musical structure processing, and EF concerned emo-
tional response to the music. The main findings of the analy-
sis were that although the piece had never been heard and the
style was unfamiliar to many of the listeners, the temporal
shapes of the emotional experience and of the sense of fa-
miliarity were clearly related to the formal structure of the
piece. Moreover, the piece elicits an emotional experience
that changes over time, passing through different emotional
states of varying force, and without having overlearned the
stylistic conventions of the particular work or style.

Music

The structure of the piece (Reynolds, 2002) was con-
ceived to allow experimental exploration of the way in
which musical materials and formal structure interact. The
piece is conceived in two main parts: one sectional (S) and
the other a more diffusely organized domain (D) structure.
Certain musical materials occur at the same place in time
and in nearly identical form (sometimes changing between
piano and orchestral versions, sometimes between instru-
mental and computer-processed versions) in the two parts.
Further, the two parts can be played in either order (S-D or
D-S), but the computer-processed part (evoking the angel)
always starts at the end of the first part and continues
throughout the second (see Figure 1). This structure allowed
for the study of the perception of certain materials under
different formal settings (embedded in the S or the D part,
played alone or in the presence of the computer part, heard
first in the S version or in the D version, etc.). The Angel of
Death thus provides a unique opportunity for music
psychologists to study the relations between materials, form,
and emotional response, and for signal analysts to explore
the relations between signal properties and psychological
responses.
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Experimental Results

In this article, we conduct several comparisons between
statistical analyses of the audio features and profiles of con-
tinuous listener responses when listening to the S-D and D-S
versions of the piece at their world premiere in Paris in June
2001. Figure 2 shows the mean profiles of the listener FR
and the EF responses, aligned with the formal structural
scheme of the composition.

Audio Features

The features considered for analysis of the audio signal
were derived by cepstral analysis (Oppenheim & Schafer,
1989). To explain the method, we need to consider a so-called
source-filter model for the audio signal. The source-filter
model decomposes an acoustic signal into an input signal, usu-
ally called excitation, and a linear filter. Statistically speaking,
the excitation usually carries the long-term correlation proper-
ties such as periodic structure due to pitch or zero correlation

between distant noise signal samples. In the frequency domain,
this corresponds to the finer details of the spectrum. The filter
usually represents short signal correlations and corresponds to
the smooth overall shape of the signal spectrum.

Cepstral analysis provides a method for separating out
the filter information from the excitation information. Using
only the few first coefficients of the cepstrum, the cepstral
components related to the filter part are retained. A reverse
transformation can be carried out to provide a smoothed
spectrum of the filter part from an otherwise very detailed
spectrum of the original signal. This smoothed spectrum also
is called the “spectral envelope.”

Loosely defined, the real cepstrum of a signal x[n] is
defined in terms of its inverse Z transform, which in turn is
defined as the logarithm of the absolute value of the Z
transform of the sequence x[n]. Alternately, we can write the
definition for the cepstrum directly

.

One of the more important properties of the cepstrum is
that it is a homomorphic transformation. A homomorphic
system is one in which the output is a superposition of the
input signals; that is, the input signals are combined by an
operation that has the algebraic characteristics of addition.
Under a cepstral transformation, the convolution of two
signals x1[n] * x2[n] becomes equivalent to the sum of the
cepstra of the signals When the two signals
correspond to excitation and filter components, and assum-
ing that each one of them occupies a separate, nonoverlap-
ping region in the cepstral domain (i.e., the filter having
nonzero values at the low cepstral components and the exci-
tation having nonzero values at the high cepstral compo-
nents), separation of the signal into filter and excitation is
possible using the so-called cepstral filtering or “liftering”

x̂1[n] � x̂2[n].

x̂[n] � Z�15log( 0Z5x[n]6 0 )6
x̂[n]

x̂[n]
FIG. 1. Graphical representation of the formal plan of the musical com-
position for the S-D and D-S versions.

(a) (b)

FIG. 2. Average Familiarity Rating and the Emotional Force responses, aligned with the formal structural scheme of the composition of the 
(a) S-D and (b) D-S versions.
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operation; that is, separately retaining and inverting1 the
cepstra of We shall call the filter part “spectral
envelope” and the excitation “spectral detail.” These proper-
ties are described in full detail in Oppenheim and Schafer
(1989).

In our analysis, we applied cepstral analysis to signal
segments (called frames) of 200 ms in duration. The analy-
sis was repeated over successive frames in time, with
advance (hop size) of 100 ms, or an overlap of 50%. Only
the first 32 real cepstral coefficients were retained. Assuming
that represents the spectral envelope component of
a signal at frame number i, we shall denote by

the cepstral feature vector.
The reason for this choice of signal features is that we

were interested in a gross spectral envelope description of
the sound, which captures sound properties that might be
described as overall sound color or texture, without consid-
ering the more detailed features due to effects such as pitch,
or notes and timbres of specific instruments. This choice was
justified in part by the type of musical material that put a sig-
nificant emphasis on orchestration aspects while being less
traditional in terms of melodic or harmonic or rhythmic
patterns. Another practical reason for the choice of cepstral
features was the ease and simplicity of their estimation.

Similarity Structure and Similarity
Matrix Grouping

The first question considered was the relation between
signal similarity and perception of musical familiarity.
Using cepstral feature vectors, a distance between two signal
frames can be estimated by calculating the Euclidian
distance between the cepstral feature vectors. One can show
that this is equal to a Euclidian distance between the loga-
rithms of the spectral envelopes of the signal in the corre-
sponding frames (i.e., between the two time instances).
Using normalized versions of the cepstral vectors, a
simplified distance matrix can be obtained directly from
the dot product of the cepstral features of every pair of signal
frames.

Let d be the similarity between the feature vectors Xi and
Xj at Frames i and j,

where is the dot product defined as
where u is the angle between the vectors, and is the norm
of Xi. This similarity measure is large when the vectors are of
high magnitude and similar, and because of the normalization,
low magnitude and similar vectors also produce a large value.

0Xi 0
0  Xi 

�
 
Xj 0 cos(u),8Xi, Xj 9

d(i, j) �
8Xi, Xj 9
�Xi� �Xj�

Xi � [x̂i
1[1], x̂i

1[1], . . . , x̂i
1[32]]T

x̂i
1[n]

x̂1[n], x̂2[n].

For each time segment, these similarity magnitude values
are plotted on a similarity matrix. Figure 3 shows a similar-
ity matrix of an example sound. We will be using this simi-
larity matrix graph as a basis for partitioning the sound into
perceptually similar groups.

This matrix is sometimes called a recurrence matrix.
It represents the spectral similarity between different time
instants of the audio signal. An example of a recurrence
matrix of the S-D recording (audio signal) is shown in Fig-
ure 3. As can be seen from the figure, the signal at different
times resembles or differs from the signal at other times. The
goal of the similarity grouping procedure is to provide a
function whose values correspond to plausible grouping
structures based on the similarity matrix. Good criteria for
grouping can be derived from considering the few first
eigenvectors of the similarity matrix.

This method of grouping analysis, sometimes called spec-
tral matrix clustering2 or, in general, Spectral Clustering (Ng,
Jordan, & Weiss, 2002), recently emerged as an effective
method for data clustering, image segmentation, Web rank-
ing analysis, and dimension reduction. At the core of the
spectral clustering method is a graph that represents relations
between different data points in terms of pairwise distances
or similarities. The segmentation methods use the Laplacian
of the graph adjacency (pairwise similarity) matrix, using
mathematical methods that evolved from spectral graph par-
titioning. It is beyond the scope of this article to discuss these
methods in detail. We shall say only that the eigenvector
represents the main “direction” or pattern of behavior in time,
according to which the similarity matrix is oriented.

1Note that exact inversion is possible only for the case of complex spec-
tra, which is more complicated due to phase problems in the definition of a
complex logarithm. In case of the real cepstrum, one still obtains the spec-
tral amplitudes of the components, and a minimum phase version of the sep-
arate signals may be obtained.

FIG. 3. Similarity Matrix representing the distances between the music
materials at different times in the S-D audio recording. The similarity is
based on the dot product of cepstral feature vectors. Bright areas correspond
to high similarity, and dark areas are different.

2The use of the term “spectral” has nothing to do with the actual audio-
signal spectrum and comes from the usage of eigenvectors as a basis for
clustering. The relation between spectrum and eigenvectors results in this
terminology.
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Segmenting and Grouping

One method of approaching the perceptual grouping is to
partition the data (image, text, or audio in our case) into two
maximally dissimilar groups. If necessary, these groups then
can be subpartitioned using the same procedure iteratively.
That is, instead of searching for consistent features to be
grouped in part of a graph, the spectral clustering methods
attempt to separate regions in a top-down manner with
the most dissimilar areas being separated first. One method,
introduced by Shi and Malik (2000), for creating these
image segmentations uses the “normalized cut” to partition
the graph.

Normalized Cut

A graph G � (V, E) in graph-theoretic language is a set of
vertices V and a set of edges E. The graph can be segmented
into two groups (i.e., A and B) by finding the “minimum cut”
cut(A, B) of the graph. The minimum cut separates Regions
A and B by finding the regions that minimize the sum of the
total weight of the edges cut. This criterion tends to select
regions that are uneven in size, so the criterion is modified to
create the normalized cut.

,

where assoc(A, V) is the weight of all connections between
the nodes in A and all vertices. This normalization more
nearly equalizes the sizes of the segmented groups. In our
case, the normalized cut criterion is used to segment our
distance matrix. In this way, the most dissimilar sound
segments will be segmented by the first Ncut bipartition.

Ncut(A, B) �
cut(A, B)

assoc(A, V)
�

cut(A, B)

assoc(B, V)

Eigenvector Method

It can be shown that the normalized cut can be calcu-
lated using methods based on eigenvectors of an affinity
matrix. Using eigenvector decomposition of our recurrence
matrix, the normalized cut can be calculated. We begin by
performing an eigenvector decomposition of our recur-
rence matrix.

where is the recurrence matrix, is
the diagonal affinity matrix, l are the eigenvalues of the sys-
tem, and v are the eigenvectors of the system.

For clustering purposes, the first eigenvector is usually
used, and each value of the eigenvector is assigned to one of
two signal groups by setting up appropriate threshold or de-
cision boundaries. One could consider this eigenvector as a
data reduction or projection of the similarity matrix onto one
salient dimension. The values of this eigenvector should
fluctuate according to the most significant changes that
occur in the similarity matrix. Accordingly, pairwise seg-
mentation or grouping is possible by associating different
values of the eigenvector to different groups. When more
than pairwise grouping is required, more eigenvectors might
be used. Since in this work we are not interested in doing ac-
tual clustering, we compared the eigenvectors of the S-D and
D-S versions of the piece to their corresponding FR profiles,
as presented graphically in Figure 4. The y axis corresponds
to normalized (zero mean and unit variance) values of the
FR profile and the Similarity eigenvector.

The correlations between the similarity eigenvectors and
FR for the S-D and D-S versions of the piece are summa-
rized in Table 1.

Wii � g jDijDij � d(i, j)

(D � W)v � lDv

FIG. 4. Familiarity Rating profiles of the human responses versus estimated similarity profile based on the first eigenvector of the similarity matrix. The
figures show results for the (a) S-D and (b) D-S versions of the piece.

(a) (b)
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The similarity eigenvector explains3 29% (R2) of the vari-
ance in the mean FR profile for the S-D version and 42% in
the D-S version. These correlations are highly significant,
but also demonstrate that additional factors besides spectral
similarity are required to better explain the familiarity rat-
ings. Discovering these additional factors will be the subject
of future research.

Predictability of Features and IR

The second question that we investigated was whether
predictability of signal features could be related to the emo-
tional content of a signal. The predictability was evaluated in
terms of IR (Dubnov, 2003), a novel feature that measures the
relative growth of information in a random process for every
additional sample that is observed over time. This also corre-
sponds to the reduction in number of bits required to code a
random process as a result of predicting this process from its
past. The larger the difference between the number of bits
needed to code the process “as is” as compared to the number
of bits required when the next sample is predicted from its
past, the higher the information rate in the process. This also
means that the knowledge of the next sample adds a signifi-
cant amount of information to the total information needed to
describe the process up to this point. For example, if on one
extreme the process is a perfect noise (i.e., it is completely
unpredictable), then the number of bits needed to code the
process with or without prediction is the same, and the result-
ing IR is zero. A similar situation (an inverted U relation) oc-
curs if the process is almost constant or has very little varia-
tion. In such a case, it might be that the next sample is almost
precisely predicted, thus requiring only a few bits to code.
Since the variation in the process is small, then the number of
bits required to code it without prediction is also small. Even-
tually, the difference in bits between coding the process “as
is” or coding the predictions is small, and IR is low.

IR is defined as the difference between the information
contained in the variables and x1, x2, . . . , xn�1;x1, x2, . . . , xn

that is, the additional amount of information that is added
when one more sample of the process is observed

.

It can be shown that for a large n, IR equals the difference
between the marginal entropy H(x) and entropy rate 

of the signal x(t),

In our experiments, we have applied the IR analysis to a
sequence of cepstral vectors that describe the evolution of
the spectral envelope over time. It is shown in the Appendix
that assuming independence of the coefficients s after an ap-
propriate transformation, one can generalize the IR defini-
tion to be the difference in information between sequences
of vectors,

This blockwise information-redundancy measure calcu-
lates the difference between the multi-information over L
consecutive vectors versus the sum of multi-information of
the first L � 1 vectors and the multi-information in the last
vector XL. The convenient property of this measure is that it
can be calculated from the marginal entropies of the n inde-
pendent components, using the IR estimates of the single
components.

As will be shown in the Appendix, using expressions for
the entropy and entropy rate of a Gaussian process, one has
the following relation between Spectral Flatness Measure
(SFM; Jayant & Noll, 1984) and the IR of a signal,

, or equivalently For
the purpose of IR estimation, the separate components are
treated as separate signals, and their IRs are estimated from
their SFMs.

As described in the section on feature vectors, the cep-
stral analysis was performed over signal frames of 200 ms
with time advance of 100 ms (50% overlap). Among all cep-
stral coefficients, the first 32 coefficients were retained for
cepstral envelope characterization. Moreover, the first com-
ponent that contains the signal energy in the frame was re-
moved from the cepstral data that were submitted for IR
analysis and was considered separately as an E feature. As
described in the Appendix, IR estimation of sequences of
vectors requires a decorrelation step to be performed prior to
estimation of the IR of the individual components. Applying
Singular Value Decomposition (SVD; Hayes, 1996) to the
cepstral feature vector matrix effectively achieves the de-
sired decorrelation. Summing the IRs of the individual com-
ponents then performs the IR analysis.

r(x) � �1
2 log(SFM(x)).exp(�2r(x))

SFM(x) �

� a
n

i�1

r(si(i), . . . , si(L)

� 5I(X1, X2, . . . , XL�1) � I(XL)6
rn

IC(X1, X2, . . . , XL) �
^ I(X1, X2, . . . , XL)

r(x) � lim
nS�
r(x1, . . . , xn) � H(x) � Hr(x)

lim
nS�

 
1
n H(x1, . . . , xn)

Hr(x) �

r(x1, x2, . . . , xn) �
1
n

 5I(x1, x2, . . . , xn) � I(x1, x2, . . . , xn�1)6

TABLE 1. Correlation between Similarity Matrix Eigenvector (normal-
ized version) and experimental Familiarity Ratings by human listeners
(df � 682, p � .0001 in both cases).

Music Familiarity Similarity Eigenvector Correlation

S-D 0.54
D-S 0.65

3The correlation coefficient (r) indicates the quality of linear fit between
the predictor parameter and the subjective data. The number of df in the test
is equal to the number of points minus 2. The p value, determined with the
Fisher r-to-z transform, indicates the probability that the two variables are
completely independent; that is, ps � .05 indicate that the correlation is
unlikely to be zero, and the correlation is considered to be statistically
significant. The coefficient of determination (R2) is the most interesting
measure since it indicates the amount of variance in the subjective data that
is explained by the predictor.



1532 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—September 2006
DOI: 10.1002/asi

Vector IR Estimation Algorithm

The IR analysis procedure consisted of the following
steps:

1. Preprocessing: The cepstral coefficients were calculated
over time frames of 200 ms with 50% overlap. Since the
first cepstral coefficient contains the E of the signal, it
was not considered as part of the IR analysis and was
later used as a separate feature.

2. Decorrelation: The cepstral feature matrix was submitted
to SVD analysis. This resulted in a set of independent
(in the case of a Gaussian process) expansion coefficients
over time.

3. Information Redundancy: The IR was calculated sepa-
rately from IRs of the coefficients. The method of calcu-
lation is based on an estimation of spectral flatness of
each individual component, considered as a scalar time
signal, as explained in the Appendix.

We found that both E and IR have high correspondence to
EF, with IR being superior to E by approximately 10%.
Next, we present several graphs that summarize our experi-
ments and principal findings.

E and EF

Figure 5 shows the relation between EF (solid) and signal
energy (dashed), estimated as the first cepstral coefficient,
using analysis frame size (Ta) of 200 ms and averaged over
macrosegments of 3 s (segment size) with no overlap be-
tween the macrosegments (Segment step is 3 s as well.) Note
the distinction between signal frames and macrosegments
(sometimes called segments): Signal frames are on the order
of hundreds of milliseconds and are used for extracting the

short-time features—in our case, cepstral coefficients. The
sequence of cepstral coefficients is further divided into
macroframes within which E or IR are evaluated. Thus, the
E and IR estimations are done using multiple cepstral vec-
tors over a 3-s period. The E feature is obtained by averaging
the first cepstral coefficient over the duration of the whole
macroframe.

Applying a 10-segment-long moving-average filter addi-
tionally smoothed the E and IR results. The experimental EF
profile was subsampled and interpolated accordingly to pro-
vide interpolated values of EF every 3 s in correspondence to
the E and IR results. (The original EF was recorded with a
2-Hz sampling rate.) As can be seen from Figure 5, certain
portions of the E curve fit closely to the EF data while other
portions differ significantly. The correlation coefficients be-
tween E and the S-D and D-S EF profiles are 0.51 and 0.36,
respectively.

IR Analysis

Figure 6 presents IR analyses of the recordings (i.e.,
audio signals) of the D-S and S-D versions. The IR property
is evaluated independently for every macrosegment. As
explained previously for the case of the E feature, IR is eval-
uated over time using sequences of cepstral features that are
organized into macroframes of 3-s duration. IR results are
additionally smoothed using a moving average over 10
segments. The correlations with EF were 0.63 and 0.46 for
the S-D and D-S versions, respectively. The results of the IR
and E correlation to the listeners’ mean EF responses are
summarized in Table 2. The explained variances for IR and
E in the S-D case are 41 and 25%, respectively, and
explained variances for IR and E in the D-S case are 22 and
10%, respectively.

(a) (b)

FIG. 5. Estimated Energy feature versus human Emotional Force profile response. The figures show results for the (a) S-D and (b) D-S versions of the piece.
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EF Estimation Using Combined E and IR

To better approximate the EF from signal analyses, we
performed a least squares fit of E and IR curves to the EF
profile. In the following, we denote E and IR as predictors
to not confuse them with the cepstral features that are
derived directly from the audio signal. E and IR predictors
could be considered as higher order features needed for the
higher level processing involved with emotional responses.

Using a combination of predictors for estimation of EF,
the predictor weights might change slowly over time de-
pending on various factors related possibly both to the na-
ture of the signal or to the listening process. A tradeoff exists
when considering a time-varying regression: Note that in
principle, a perfect fit is possible if the weight coefficients
vary every sample. On the other hand, we cannot expect to
have a single constant set of weights over the whole duration
of the signal. As a reasonable compromise, we chose a 1-min
block as the regression period over which the weight coeffi-
cients would be estimated.

Additionally, we should require a nonnegative contribu-
tion of the predictors to the total EF response. This decision
is justified by the claim that the various factors can contribute
positively to the emotional response, but they cannot cancel
each other or inhibit the total EF response. Accordingly, we
employed a nonnegative least squares (NNLS; Lawson &
Hanson, 1974) regression for estimation of the EF match
from E and IR. NNLS solves the algebraic equations of the

least squares problem subject to the added constraint that the
fitting parameters contain no negative elements.

Figure 7 shows the results of NNLS regression of E and
IR so as to match EF in a time-varying manner with regres-
sion weights varying every minute. The correlations be-
tween the NNLS fit of IR and E and EF are summarized in
Table 3. Note that the gain in predictability obtained with the
multiple correlation is quite large, resulting in 82 and 83%,
respectively, of the explained variance for the two versions.

Discussion and Conclusions

Our results indicate that structural and affective analyses
from statistical properties of the audio signal are plausible. In
our analysis, we employed a simplified signal representation
by means of a sequence of spectral envelopes, represented by
32 real cepstral coefficients that were calculated over 200-ms
signal segments. These features were used for estimation of
the similarity matrix, which serves as the basis for structural
analysis of the signal repetition structure. We found that 29 to
42% of the variance in the Familiarity property is explained
by the grouping profile as represented by the first eigenvector
of the similarity matrix. Using the same features over
macroframes of 3 s, local time-varying parameters of E and
IR were derived. We found that E alone explained 10 to 26%
of the variance in EF. Using IR of the cepstral coefficients ex-
plained 22 to 41% of the variance in EF, if used alone, and up
to 83% of the variance when both features are optimally com-
bined in a nonnegative manner over 1-min segments.

Although our model is grossly oversimplified and cannot
capture the true complexity of music, we found a significant
correspondence for FR and a high correspondence for EF
between our very simple statistical audio-signal analysis 
and experimental listener responses. In this article, we pro-
vided a principled formalization of the concepts of signal
recurrence and signal information rate as new features for

(a) (b)

FIG. 6. Estimated IR feature and listener Emotional Force profile response. The figures show results for the (a) S-D and (b) D-S versions of the piece.

TABLE 2. IR and Energy correlation to the human responses of
Emotional Force (EF) (df � 682, p � .0001 in all cases).

EF IR Energy

SD 0.63 0.51
DS 0.47 0.33
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signal characterization. We examined the relation of these
features to listeners judgments of familiarity and emotional
force.

Considering additional musical parameters such as
melody, harmony, and rhythm might improve the results and
will probably be required to deal with additional musical
styles. Note that these musical features are complicated for
estimation from a raw audio signal. A subject for future re-
search is to find a method for machine learning of regression
coefficients. Although it is plausible to assume that human
listening criteria might vary for different types of music and
for different listeners, we would like to determine a priori the
rules of regression for different types of signals. Applica-
tions of the method to signal classification, music summa-
rization, and automatic music appreciation are the subject of
future work. Another interesting future direction might be
high temporal resolution functional magnetic resonance
imaging studies correlating brain states to these statistics.

Potential significance of the results for musical and
cognitive research seems to be quite exciting. Music can be
viewed as successions of sonic events that unfold over time
to create temporal patterns and expectancies. Leonard
Meyer’s Emotion and Meaning in Music (1956) relied heav-
ily on psychological insights and psychologically based
arguments in describing music, suggesting strong dependen-
cies between expectation, emotion, and meaning. It has
since become a commonly accepted view that music

operates on perceptual and cognitive aspects of our listening
experience by the forming and violation of anticipation to
create tension and resolution over time. The work presented
here suggests that principled research into these questions is
possible using our analytic features and statistical methods.
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Appendix

Spectral Flatness Measure

Given a signal with power spectrum S(v), SFM is
defined as

Rewriting it as a discrete sum gives

which shows that SFM can be viewed as the ratio between
the geometric and arithmetic means of signal spectra, thus
being positive and �1. SFM � 1 only if all spectrum values
are equal, thus meaning a flat spectrum or a white-noise
signal.

Information Redundancy

Given a random variable x, with probability distribution
f(x), the entropy of the distribution is defined as (Cover &
Thomas, 1991)

For the joint distribution of two variables x1, x2, the joint
entropy is defined as

The average amount of information that the variable x1 car-
ries about x2 is quantified by the mutual information

I(x1, x2) � H(x1) � H(x2) � H(x1, x2)

H(x1, x2) � �� f(x1, x2)  log f(x1, x2)dx1dx2

H(x) � �� f(x)log f(x)dx

SFM(x) �

exp a 1
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Generalization of the mutual information for the case of n
variables is

This function measures the average amount of common
information contained in variables Using the
mutual information, we define marginal information redun-
dancy (sometimes simply called Information Redundancy or
IR) (Dubnov, 2003) to be the difference between the com-
mon information contained in the variables and
the set i.e., the additional amount of informa-
tion that is added when one more variable is observed.

.

Since in our application we are considering time-ordered
samples, this redundancy measure corresponds to the rate of
growth of the common information as a function of time. It
can be shown that the following relation exists between
redundancy and entropy:

This shows that redundancy is the difference between the
entropy (or uncertainty) about isolated xn and the reduced
uncertainty of xn if we know its past. In information theoretic
terms, and assuming a stationary process, this measure
equals the difference between the entropy of the marginal
distribution of the process xn and the entropy rate of the
process, equally for all ns.

Relation Between SFM and IR

To assess the amount of structure present in a signal in
terms of its information content, we observe the following
relations between a signal spectrum and its entropy. The en-
tropy of a “white” Gaussian random variable is given by

,

while the entropy rate of a Gaussian process (the so-called
Kolmogorov-Sinai Entropy) is given by

According to the previous section, IR is defined as a dif-
ference between the marginal entropy and entropy rate of the

 �
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signal x(t), Inserting the expressions
for entropy and entropy rate, one arrives at the following
relation:

One also can see that IR is equal to half the logarithm of SFM.

Vector IR as the Sum of Independent Component Scalar IRs

To consider a sequence of random vectors, we general-
ized the idea of IR by representing the vector process as
independent linear combinations of n-dimensional basis
vectors. We denote by X the original vectors, A the basis,
and s the coordinates or coefficients of X in the Basis A.

Given a linear transformation X � AS between blocks of
the original data (signal frame of feature vector X) and its ex-
pansion coefficients S, the entropy relation between the data
and coefficients is For a se-
quence of data vectors, we evaluate the conditional IR as the
difference between the entropy of the last block and its en-
tropy given the past vectors (This is a conditional entropy,
which becomes entropy rate in the limit of an infinite past.)
Using the standard definition of multi-information for signal
samples ,

,I(X1, X2, . . . , XL) � a
Ln

i�1

H(xi) � H(x1, . . . , xLn)

x1 . . . xnL

H(X) � H(S) � log 0  det(A) 0 .

[X1X2 . . .] � A ≥
s1(1) s1(2) . . .

s2(1) s1(2) . . .

o o . . .
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¥

SFM(x) � exp(�2r(x)) �
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2p
 � ln S(v)dvb

1

2p
 �S(v)dv

r � H(x) � Hr(x). we write the vector IR as

This shows that the vector IR can be evaluated from the
difference of the entropy of the last block and the conditional
entropy of that block given its past. Using the transform rela-
tion, one can equivalently express vector IR as a difference in
entropy and conditional entropy of the transform coefficients

(Note that the
dependence upon the determinant of A is canceled by
subtraction.) If there are no dependencies across different co-
efficients and the only dependencies are within each coeffi-
cient sequence as a function of time (i.e., the trajectory of
each coefficient is time dependent, but the coefficients
among themselves are independent), we arrive at the
relation:

Combining these equations gives the desired result:
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