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Generalized Likelihood Ratio Test for
Voiced-Unvoiced Decision in Noisy Speech

Using the Harmonic Model
Etan Fisher, Joseph Tabrikian, Senior Member, IEEE, and Shlomo Dubnov

Abstract—In this paper, a novel method for voiced-unvoiced
decision within a pitch tracking algorithm is presented. Voiced-
unvoiced decision is required for many applications, including
modeling for analysis/synthesis, detection of model changes for
segmentation purposes and signal characterization for indexing
and recognition applications. The proposed method is based on
the generalized likelihood ratio test (GLRT) and assumes col-
ored Gaussian noise with unknown covariance. Under voiced
hypothesis, a harmonic plus noise model is assumed. The derived
method is combined with a maximum a-posteriori probability
(MAP) scheme to obtain a pitch and voicing tracking algorithm.
The performance of the proposed method is tested using sev-
eral speech databases for different levels of additive noise and
phone speech conditions. Results show that the GLRT is robust
to speaker and environmental conditions and performs better
than existing algorithms.

Index Terms—Generalized likelihood ratio test (GLRT), har-
monic model, likelihood ratio test (LRT), maximum a-posteriori
probability, noisy speech, pitch tracking, voice activity detection
(VAD), voiced-unvoiced decision.

I. INTRODUCTION

GROWING demand for advanced speech and audio appli-
cations requires new processing methods that are both

flexible and robust to acoustical, environmental and system er-
rors. As the demand for variable-rate speech coding applications
increases, the role of voicing detection/decision is crucial for ef-
ficient bandwidth reduction. In speech, a decision is made be-
tween voiced and unvoiced speech phonemes. Correct voicing
detection also allows for signal segmentation, reconstruction
and denoising.

Due to the periodic nature of speech and most musical instru-
ments, it is possible to closely represent the voiced signal of a
speaking person, singing voice or musical instrument by a col-
lection of sinusoidal oscillators. Sinusoidal modeling for speech
applications was introduced by McAuley and Quatieri [1]. In
[2] and [3], methods which consider the sinusoidal model with
noise are presented.
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The harmonic model assumes all sinusoidal components are
harmonically related, i.e., the frequencies of the sinusoids are at
integer multiples of the fundamental frequency. This approach
reduces the number of parameters in the model and achieves
more accurate estimates of signal of interest parameters than
the sinusoidal model. Several approaches to this model have
been developed. The harmonic model under noisy conditions
has been implemented extensively in recent studies for speech
synthesis [4] and analysis [5]–[7].

Recent studies on voicing decision implement various
methods of sound modeling. In [8], a statistical model-based
voiced activity detector (VAD) is presented. The decision rule
is established from the geometric mean of the likelihood ratios
for individual frequency bands. A first-order hidden Markov
model (HMM) based hang-over scheme is applied. A method
for voicing decision within a pitch-detection algorithm is pre-
sented in [9]. The decision is made by defining a threshold to
the median values of the cepstral peaks, the zero crossing rate
(ZCR) and a short-time energy decision. An auditory-based
method for voicing decision within a pitch-tracking algorithm
appears in [10]. In [11] the concept of dominance spectrum
is used for voiced-unvoiced decision for added white and
babble noise conditions. Phone speech voicing and parameter
extraction are presented in [12]. A comparison of several pitch
detection and voicing decision methods is presented in [13].
The comparison is carried out between a simplified inverse filter
tracking (SIFT)-based method [14], a Frobenius norm based
method [15], and bilinear time-frequency based methods [16],
and is performed using the Keele University database [17].

In this paper, the voicing decision problem using the gen-
eralized likelihood ratio test (GLRT) is addressed. Assuming
Markovian dynamics, maximum a-posteriori probability
(MAP) tracking of a time-varying locally harmonic signal is
performed. Voicing is considered as an additional state in the
global likelihood function. The voiced log-likelihood, evaluated
for estimated pitch, is compared to the unvoiced log-likelihood
in every frame. The described GLRT is shown to be the rela-
tion between the projection of the signal upon the harmonic
subspace and its projection upon the orthogonal, nonharmonic
subspace.

The structure of the paper is as follows. In Section II, we
present the problem formulation. In Section III, the GLRT
for voicing decision is developed. Section IV describes the
MAP-based decision tracking algorithm. In Section V, the per-
formance of the proposed algorithm is evaluated under noisy
conditions. Section VI presents our conclusions.
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II. PROBLEM FORMULATION

Let be a vector representing audio
signal of a finite frame of samples. The harmonic model for
the measurements of a given voiced frame is presented in [7]
and can be written as

(1)

where is the harmonic matrix and is the harmonic co-
efficient vector. The harmonic matrix, , can be partitioned
as where

where is the total number of harmonics in the signal and
.

In this work, we assume that the noise covariance matrix, ,
is unknown. With no loss of generality can be decomposed
as , where is an unknown nonnegative definite
matrix, while is known. This is not a limiting assumption,
since in cases when the white noise variance, , is unknown, it
can be assumed that , and will be estimated.

Therefore, the problem is to decide between the following
two hypotheses:

(2)

The first hypothesis, , corresponds to the case of voiced
speech. The signal is considered as harmonic with additive
noise, modeled as zero-mean Gaussian. Hypothesis corre-
sponds to the case of unvoiced speech or silence, in which the
signal contains background noise only. Under this hypothesis,
the signal is modeled as a colored, zero-mean Gaussian noise
with unknown covariance matrix.

III. GLRT FOR VOICED-UNVOICED DECISION

The GLRT for decision between the two hypotheses, stated
above, is

(3)

where and are the probability
density functions (pdfs) under hypotheses and , respec-
tively. We now proceed to develop the likelihood functions for
both hypotheses and present the resulting GLRT.

A. : Harmonic Noise

In order to derive the log-likelihood function under hypoth-
esis , we employ the results obtained in [18], in which the

log-likelihood for an equivalent model to the -hypothesis
from (2) is developed. Consider the data model comprised of

snapshots

(4)

in which the complex amplitude vector , is
unknown deterministic and is a known function of unknown
deterministic vector parameter, , satisfying , . The
noise vectors are an i.i.d. sequence with Gaussian distribution

where and is an unknown
nonnegative-definite matrix. The vectors , and are of
size . Then in [18] it is shown that the log-likelihood func-
tion for estimating (after maximization with respect to the nui-
sance parameters, and ) is given by1

(5)

where is the size of the vector . denote
the eigenvalues of the matrix , in which

is the sample covariance matrix and
is an matrix whose columns are orthogonal

to such that defines a complete orthonormal
basis, which satisfies

(6)

In the Appendix, it is shown that in a single snapshot case,
i.e., , the likelihood function is given by

(7)

where is the measurement vector in the single snapshot
case. The model under hypothesis , presented in (2), is equiv-
alent to (4), with a single snapshot, i.e., . The model in
(2) can be rewritten as

(8)

where the unknown deterministic vector is . For
simplicity of notation, we omit the dependence of the matrix
on . Thus, the term from (7) can be expressed in terms
of and as

(9)

1[18] is developed for complex signals. Equation (5) is obtained after simple
modifications for a real signal model.
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Thus, the likelihood function under hypothesis is given by

(10)

Let the square matrices and of size be defined
as and . Then, maximization
of with respect to can be
performed by generalized eigen-decomposition of .
Let and de-
note the generalized eigenvalues and eigenvectors of ,
respectively

(11)

Then, . By substi-

tuting the terms for and in (11), and left-multiplying by
, one obtains

(12)

Since , then
and can be obtained by left multiplying (12) by

, which yields

(13)

where denotes
the harmonic projection matrix. The resulting log-likelihood
function under hypothesis is given by

(14)

where is given by:

.

B. : Noise Only

We now develop the likelihood function under hypothesis
, which represents the case of colored Gaussian noise with

unknown covariance matrix, . The log-likelihood function
under hypothesis is given by

(15)

where the maximization is performed with the constraint
assuming nonnegative definite matrix, . Without this

constraint, i.e., when , the ML estimate of is
. In [18] it is shown that the constrained ML estimate of

is obtained by the sample covariance matrix after thresholding
its eigenvalues by . Thus, the ML estimate of the covariance
matrix is given by

(16)

with eigenvalues , , and therefore

(17)

The matrix can be calculated from (16) using the Bartlett
identity, and it can be verified that . The resulting
log-likelihood function under hypothesis is

(18)

C. Decision Between Hypotheses

The GLRT from (3) can be expressed by

(19)

where and are the log-likelihood functions under hy-
potheses and , respectively, derived in the previous sub-
sections. By subtracting the two log-likelihoods, and ,
from (14) and (18) we obtain

(20)

The matrix is also a projection matrix
satisfying and therefore

(21)

Thus, from (19) and (21) we obtain

(22)

Finally the test can be rewritten as

(23)
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The GLRT for voicing decision proposes to measure the ratio
between the energy of the harmonic part of the signal matching

and the energy of the complement signal. If the energy of the
harmonic part of the signal is large compared to the rest of the
signal, the frame is decided to be voiced.

The threshold, , is determined to minimize the probability of
error. As will be explored in the experiments, the optimal value
of the threshold depends on the SNR.

IV. MULTIPLE FRAME TRACKING

A forward-backward Viterbi-like tracking algorithm is ap-
plied to the multi-framed signal. In [7] the MAP estimator for
the fundamental frequency based on the harmonic model is pre-
sented. The pitch is tracked based on measurements collected
over several frames using the MAP approach. In this method,
a grid of possible states for the fundamental frequency, , is
determined, and the likelihood function is calculated for each
frame. The tracking algorithm estimates and tracks the funda-
mental frequency using the likelihood function at each frame
and the transition probability matrix, introducing the prior sta-
tistical knowledge on the fundamental frequency dynamics.

A similar tracking algorithm for MAP-based voicing decision
is implemented with an additional unvoiced state. The log-like-
lihood under hypothesis is calculated in addition to .
The transition probability matrix is extended to include transi-
tion to and from the unvoiced state between adjacent frames.
This algorithm simultaneously tracks the pitch and decides be-
tween the two hypotheses.

The tracking algorithm calculates the a-posteriori cumula-
tive probabilities for each hypothesis at each step. Therefore,
tracking is performed on the input matrix comprised of the log-
likelihood functions, , where is the
actual threshold value used for the test.

V. EXPERIMENTAL RESULTS

The results of the proposed GLRT decision method were
tested under conditions of both additive noise and phone
speech conditions. Additive noise experiments were carried
out using the Keele pitch database and the well-known TIMIT
speech database. Phone speech results were achieved using
the NTIMIT phone speech database which consists of the
TIMIT speech files re-recorded through an actual telephone
network [19].

A. Additive Noise

The Keele University pitch database was developed for the
purpose of comparing pitch extraction algorithms [17]. The
database consists of two types of signals: an acoustic signal
digitized at a sampling rate of 20 KHz and a laryngograph
of the acoustic signal. Five female and five male speakers
were recorded reading the same passage of English text. The
recordings were performed in low ambient noise conditions
using a sound-proof room. The database includes reference
files containing voiced-unvoiced segmentation and a pitch esti-
mate for 25.6 msec segments overlapping every 10 msec. The
reference files also mark uncertain pitch and voicing decision.
For the results presented, uncertain frames and transient frames

were marked and not included in the statistics. Transient frames
were defined as the frames in which a change occurs in the
database voicing decision and the immediately adjacent frames.
Analysis was performed for a frequency range of 80–360 Hz
with a resolution of 1 Hz. Pitch tracking results have been
previously published and appear in [7].

The GLRT was tested for two types of additive noise: zero-
mean white Gaussian noise (WGN) and babble (cocktail party)
noise. The performance of the proposed decision method was
tested at SNR’s from 0 dB to 25 dB. The calculation of the error
decision probabilities is comprised of unvoiced frames detected
as voiced frames, , and voiced frames detected as un-
voiced frames, .

The test threshold, , can be optimized to minimize the proba-
bility of error. The optimal threshold value depends on the SNR.
Fig. 1 shows the results of the GLRT at threshold levels, op-
timized for SNR’s of 15 dB and 25 dB and for clean speech.
The lower bound curve is obtained by adaptive threshold set-
ting in which the threshold is adjusted for each SNR. This lower
bound curve can be achieved by adaptive noise estimation. The
threshold has a relatively large variance and achieves best re-
sults at the threshold extracted at an SNR of 15 dB. At high
SNR’s, there are less missed voiced frames, but the number of
false detected voiced frames rises. For a low level of additive
noise (around 15 dB SNR) the error is smallest. In the anal-
ysis of clean speech, there is a bias toward voiced detection.
This implies voiced phonemes are detected better than unvoiced
phonemes. Adding a low level of noise to the data signal would
solve this problem.

The GLRT was also tested on similar data from the TIMIT
speech database. Five female speakers and five male speakers
were chosen randomly. The voicing decision was extracted from
the phonetic transcription accompanying the speech files. Tran-
sient frames were not included in the statistics. Results for this
test appear in Fig. 2. These results are very close to the results
of Fig. 1 and demonstrate the robustness of the algorithm to
speaker and environmental conditions.

Fig. 3 compares the GLRT error results for additive WGN
and babble noise using the threshold optimized for

. The harmonic nature of the babble noise causes a larger
error for this case and therefore, a greater decision error.

It should be stated that the minimum threshold values for babble
noise vary only slightly and, therefore, have little or no depen-
dence on SNR.

Fig. 4 presents decision error tradeoff (DET) curves, i.e.,
as a function of for added WGN at SNR

values of 5, 10 and 15 dB. A comparison of several dif-
ferent pitch detection and voicing detection methods was
tested against the Keele pitch database and presented in [13].
Fig. 5 presents the DET curves for the methods compared
in [13] using clean signal. A comparison between the per-
formance of the proposed GLRT decision method (Fig. 4)
and the methods presented in [13] (Fig. 5) shows that the
GLRT provides much better voicing decision performance.
For example, at a high SNR (15 dB), the GLRT obtains

, improving on the methods pre-
sented in Fig. 5. The best corresponding result (for the BTFR
method) is at . The DET curves
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Fig. 1. Total decision error results for WGN at various threshold levels using Keele database.

Fig. 2. Total decision error results for additive WGN using TIMIT database.
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Fig. 3. Total decision error results for WGN and babble noise using Keele database. The threshold was optimized for SNR = 15 dB.

Fig. 4. DET curve for WGN at 5, 10, and 15 dB using Keele database.
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Fig. 5. DET curves for different methods published in [13] using clean signal from Keele database.

Fig. 6. Male and female speaker DET curves at 15 dB WGN using Keele database.

for female and male speakers at with WGN
appear in Fig. 6. The GLRT obtains

for female speakers and for male
speakers.
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TABLE I
DECISION ERROR RESULTS FOR CLEAN SPEECH (TIMIT) AND THE

CORRESPONDING PHONE SPEECH (NTIMIT)

TABLE II
DECISION ERROR FOR VOICED PHONEMES FROM NTIMIT DATABASE

TABLE III
DECISION ERROR FOR UNVOICED PHONEMES FROM NTIMIT DATABASE

B. Phone Speech

The GLRT was also tested on a database extracted from the
NTIMIT phone speech database. The speakers were chosen
to be the same as the speakers from the TIMIT database pre-
sented in the previous section. The phone speech files from
the NTIMIT database were tested using the proposed GLRT
and compared to the results for the corresponding clean TIMIT
speech files. The results appear in Table I.

Tables II and III show the GLRT error for voiced and un-
voiced phonemes from the NTIMIT database [19], respectively.
These results imply there is a bias in the GLRT toward voiced
decisions, as mentioned above. In the voiced case, semi-vowels
and glides may cause errors. In the unvoiced case, the harmonic
nature of some phonemes causes the relatively large error. For
example, fricative ’s’ is frequently accompanied by a low ampli-
tude whistle. The GLRT for phone speech performs better than
other existing algorithms, such as ARTIFEX [12].

C. Computational Aspects

The GLRT was tested on a Pentium 4, 1.4-GHz Linux server
running MATLAB. The analysis time for a 60-s speech file was
56.5 s. The corresponding number of floating point operations
(FLOPS) was under 1.45e10, i.e., about 250 MFlops/s. These
results show the GLRT can be implemented in real-time. Further
improvement could be achieved by real-time optimization and
implementation in lower level programming languages.

VI. CONCLUSION

The problem of voiced-unvoiced decision was addressed in
this paper. A novel method based on the GLRT was derived
where the voiced hypothesis was modeled by a harmonic signal
and an additive Gaussian noise with unknown covariance. The
unvoiced data model was a zero-mean, Gaussian vector with
unknown covariance matrix. A MAP-based tracking algorithm
was implemented. The GLRT was tested on the Keele pitch data-
base and TIMIT and NTIMIT databases. The GLRT performs

well for both noise and convolutional distortion such as phone
speech. Results show better performance compared to other ex-
isting methods for voiced-unvoiced decision.

APPENDIX

DERIVATION OF THE LIKELIHOOD FUNCTION IN (7) FOR THE

SINGLE SNAPSHOT CASE

In the single snapshot case where , the sample covari-
ance matrix is given by and the matrix can be
rewritten as

(24)

Since the matrix is of rank one, then its eigenvalues are equal
to zero except the first one, , given by

(25)

According to (6), , and thus,

(26)

Assuming , the log-likelihood function from (5) is

(27)

and the likelihood function is given by

(28)
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