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ABSTRACT

 

This paper describes algorithms to convert spectrograms, cochlea-
grams and correlograms back into sounds. Each of these represen-
tations converts sound waves into pictures or movies. Techniques
for inversion, known as the Pattern Playback problem, are impor-
tant because they allow these representations to be used for analysis
and transformations of sound. The algorithms described here use
convex projections and intelligent phases guesses to iteratively find
the closest waveform consistent with the known information.
Reconstructions from the spectrogram and cochleagram are indis-
tinguishable from the original sound. In informal listening tests, the
correlogram reconstructions are nearly identical.

 

1. INTRODUCTION

 

Audio researchers often use visual representations of sound to gain
a better understanding of the components of the sound. This paper
describes methods for displaying sound visually and explains algo-
rithms developed to turn these pictures back into sound. We call
these inversion techniques Pattern Playback. Figure 1 shows the
techniques described in this paper.

Although there are many ways to represent sounds, this paper only
describes those that are used to make images or movies. These rep-
resentations include the conventional spectrogram and two analytic
models of human perception. Other sound analysis techniques,
such as linear-predictive coding (LPC) and sinusoidal analysis are
not covered here. These techniques only model a subset of the
sounds we hear and generally aren’t used to make visual represen-
tations.

Pattern playback is interesting for two reasons. First, pictures of
sound are useful for describing and transforming sounds. Editing a
waveform is a good solution for some tasks, but not for all sound
transformations. For some tasks editing a spectrogram might be
more appropriate. Thus, using the techniques described in this
paper, the most appropriate representation for the task can be used
and the desired sound resynthesized from its picture. Moreover,
pattern playback is a good test of the quality and completeness of a
representation.

An ideal representation will have several properties. First it will
make clear the salient patterns of a sound. Second, small changes in
the representation make small changes in the resulting sound.
Finally, each picture or movie will represent a perceptually unique

Figure 1 - This figure shows a roadmap of this paper, the auditory representations and the pattern playback techniques.
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sound. The three visual representations described here meet these
requirements to varying degrees.

The name Pattern Playback was used by Frank Cooper in the early
1950’s. Cooper showed that it was possible to draw a pattern of
paint splotches on plastic and then use a machine of his design to
play back the sound [1]. This made it possible for his lab to do
many psychoacoustic experiments and it helped validate the use of
a spectrogram. Today, the analysis and resynthesis tools are more
powerful. This paper will describe Cooper’s original machine as
well as the state of the art. 

This paper has five additional sections. Section 2 describes the
mathematical tools used by the inversion techniques described
here. Sections 3, 4, and 5 describe the use and inversion of the spec-
trogram, cochleagram and correlogram. Each of these representa-
tions will be described in its respective section. The cochleagram
and correlogram are computer models of auditory perception that
have many interesting properties. Only in the last year have we dis-
covered techniques to invert them. Finally, Section 6 will review
our successes. The techniques described in this paper have also
been discussed in other publications [2, 3]. New results are pre-
sented here.

 

2. TOOLS

 

The algorithms used in this paper have much in common. In the
analysis case the representations are generated by transforming the
sound’s waveform into a higher-dimensional space. The forward
transform is well defined, stable and results in a picture or movie of
the sound. 

In general the inverse process is not so straightforward. To address
this problem we define the inverse task as finding a waveform that
comes closest to generating the given picture. This last statement
has two components. First, many waveforms are often possible, we
just need to pick one. If the representation is perceptually relevant,
then all possible waveforms sound identical, even though the wave-
forms are very different. Second, not all pictures are valid sounds.
We should find a waveform that produces a picture as close as pos-
sible to the original picture. Choosing the closest answer is an
important aspect of the algorithms.

This section describes the two primary tools we used for pattern
playback: convex projections and reducing the RMS error.
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Convex Projections

 

Convex projections form the basis of the inversion techniques
described in this paper. In each case we can describe the desired
solution as the intersection of a number of infinite dimensional sets.
In some cases the set is as simple as all functions that have a finite
bandwidth. Other constraints are more specific: all functions, f(x),
that have the value 3.4 when x=1.

We solve the inversion problem by finding a waveform that satisfies
the known constraints on the solution [4]. Ideally all constraints
will overlap at a single point. In practice there is a large set of
waveforms that satisfy the constraints and we need to pick one, per-
haps the waveform that is closest to our initial guess. We hope that
the union of all constraints is a small neighborhood of perceptually
identical waveforms. In this case it doesn’t matter which waveform
we choose.

The term 

 

convex projections

 

 indicates two components of the pro-
cess. First, a constraint must restrict the solution to a convex set. A
set of points is convex if given any two points in the set, all inter-
mediate points are also in the set. Thus convex sets are important
because they allow us to define a projection operation. If the set is
convex, given any point outside the set there is a unique point
inside the set that is closest to the original point. The process of
moving a point which is outside the set to the closest point in the set
is called a projection. 

The algorithm we use to invert each of the sound representations
consists of a number of convex projections. We can start with an
initial guess and at each step we project the waveform onto one of
the convex sets. At the next step we project onto another set, and
iterate between sets until we have converged to a solution.

While in theory we can start the iterations with any waveform, in
practice we want to start with the best possible guess. Convergence
of these algorithms depends on the quality of the initial estimates
and the constraints used to define the convex projections. Depend-
ing on the orthogonality of the constraints and how far we need to
move, convergence might be too slow to be practical. If we gener-
ate a better initial guess, then the convex projections are not nearly
so critical. In many cases a good initial guess dramatically reduces
the number of projections.

 

1

 

 

Convex sets can be defined in many different ways. In some cases,
the set will be defined in the time domain; in other cases, it might
be defined in the frequency domain. There are many types of con-
straints that we and the given picture can place on the final result.
The list below shows the constraints used in this work and the cor-
responding projection operator:

• Bandlimited - Filter to remove unwanted components
• Subset of known time-domain values - Replace estimated

values with known values.
• Unique magnitude - Not convex, but keep phase and

replace with known magnitude.

 

RMS Energy

 

The error metrics in these inversion techniques are based on reduc-
ing the RMS energy in the difference signal. We would prefer to
optimize the perceptual error, but only RMS error is mathemati-
cally tractable. As we will show, our results do not suffer due to this

limitation in our algorithms. Still there is no guarantee that the
methods we describe will necessarily sound perfect. 

Through all these procedures, we’re only reducing the RMS differ-
ence between the given picture and the picture of the current wave-
form guess. There are many modifications of a spectrogram that are
imperceptible. Adding a tone that is below the auditory masking
threshold will have a large effect on the spectrogram. Reducing the
RMS level of this component in the spectrogram will have no effect
on the perception.

We hope the perceptual auditory representations are less sensitive
to this effect. As we described above, a perceptual representation
should model sounds so that small changes in the perception corre-
spond to small changes in the representation. In the right perceptual
space, RMS differences will accurately model perception.

 

3. SPECTROGRAMS

Usage

 

Spectrograms are a popular way to visualize sound. Spectrograms,
or more correctly short-time Fourier transforms (STFT), transform
small portions of a waveform into the frequency domain. Trans-
forms from adjacent windows of data are rendered as a picture to
create an image of the sound’s frequency content versus time.

Used originally to analyze speech, the spectrogram took on new
meaning when it was used to synthesize sounds. Cooper’s machine
used an array of light sources, each modulated at one of the fifty
harmonics of 120Hz, to illuminate acetate tape. Patterns were
painted on the film and the light that was reflected from the pattern
was collected and amplified for playback. The result was “highly
intelligible” speech [1].

 

Inversion

 

In principle, since the Fourier transform is easily inverted, comput-
ers should be able to replicate the original pattern playback hard-
ware. But a spectrogram usually starts with overlapping windows
of data, and the phase of each Fourier transform is thrown away.
The result is a nice picture of the spectral content, but not some-
thing that is easy to invert. Not only is it necessary to recover the
lost phase, but it’s important to combine the multiple windows of
data to come up with the best reconstruction.

Spectrogram inversion is accomplished by noting that there are two
defining sets. First the desired waveform has a known magnitude
spectrum. We also know that all windows of data must be consis-
tent. Neither of these restrictions are convex sets, but it is easy to
show [5] that the following procedure always reduces the error at
each iteration. The result is an algorithm that should converge to the
correct answer.

Spectrogram inversion is accomplished by a three step process: ini-
tial phase estimation, time-domain projection, and frequency-
domain projection. The primary goal is to recover the lost phase
information. We are given the exact magnitude information. If we
find the exact phase information, we can generate the original
waveform.

To reduce the need for iterations, we should start with a guess for
the phase that will lead to a good reconstruction. One possibility is
to generate the waveform, from left to right, inverting each slice of
spectral data assuming zero phase and merging it into the waveform
that we’ve already computed.

 

1. Thanks to Richard F. Lyon for emphasizing this 
aspect of our work.
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We can generate a better initial waveform by estimating a consis-
tent set of phases. This is found by rotating each new window of
data over the existing waveform looking for the best match [2]. The
peak of the cross-correlation between the existing waveform and
the new data slice indicates the proper rotation and the best set of
phases for the reconstruction.

The second stage of the spectrogram inversion is time-domain pro-
jection, combining multiple windows of time-domain data. The
basic procedure is called overlap-and-add. This work uses a varia-
tion derived by Griffin [5] that minimizes the mean-squared error in
the reconstruction. The result, at this point, is the first waveform
estimate.

The third stage is frequency-domain projection, combining the
STFT of the estimated waveform and the magnitude of the original
spectrogram. We know that the original spectrogram has the correct
magnitude thus we take the magnitude from the original spectro-
gram and the phase from the new spectrogram. The algorithm
repeats the last two stages as often as needed.

The properties of this algorithm are easiest to see by reconstructing
the spectrogram of a single tone. Figure 2 shows the reconstruction
assuming zero phase (no iterations) and after five iterations. Note
the large phase discontinuities in the initial waveform (a) make it
difficult for the algorithm to converge. Figure 2(b and c) show the
result if the rotation algorithm described above is first used. Now
the initial waveform (c) is as good as the zero-phase iterated case
(b) and the extra iterations have little work to do (d).

It is worth noting that using autocorrelation to align the phase of the
initial STFT produces results identical to the SOLA algorithm [6]
used to perform time-scale modification of speech. The extra itera-
tions serve to improve the resulting waveform and thus might be
useful in other applications where modifying the time course or
pitch of a signal is required.

 

Results

 

It is important to remember that not all spectrograms correspond to
valid waveforms. Figure 3 is a reproduction of a portion of one of

Cooper’s painted spectrograms. We can scale this so that formant
frequencies are in the proper place and generate a reconstruction.
Spectrograms with uniform black patches do not correspond to
valid waveforms. The inversion result is buzzy and the spectrogram
of this inversion has a large amount of speckle noise. The closest
the spectrogram can come to representing the uniform black spec-
trogram patches is shown in Figure 3b.

Unlike the Pattern Playback machine, the spectrogram in Figure 3a
is missing any pitch information. Figure 3c shows what happens
when we multiply the original spectrogram by the spectrogram of a
120 harmonic series. This simulates the glottal source of a mono-
tone speaker. The inversion process produces a speech sound with a
clear pitch. In addition, the spectrogram of the inversion result is
very close to the original filtered spectrogram (Figure 3d.)

The remainder of this paper discusses the use and inversion of per-
ceptual audio representations. We will return to the spectrogram
shortly since the correlogram inversion depends on spectrogram
inversion. 

 

4. THE COCHLEAGRAM

Uses

 

Psychoacousticians have built many models of human auditory pro-
cessing. Some of these models are detailed, while other only
vaguely resemble the auditory system. They all share the desire to
capture the most important aspects of the way that sound is per-
ceived by humans. The output of these models is a physical mea-
sure at some stage in the auditory processing stream. 

All cochlear models share the goal of modelling the time-frequency
analysis properties of the cochlea. Thus their output is a measure of
cochlear activity as a function of place along the cochlea. Since
each position along the cochlea responds best to one frequency, we
often think of cochlear models as representing the signal as a func-
tion of time and frequency.
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 The result is a two dimensional repre-
sentation of sound.

Figure 2 - Four spectrogram reconstructions of a constant
amplitude tone showing the effect of initial phase estimates
and iterations. The first iteration with rotated phase (c) is as
good as the final iterated guess with zero phase (b).
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2. This is not strictly true since the cochlea is highly 
nonlinear [7].

Figure 3 - Pattern playback of Cooper’s patterns: (a) the
original spectrogram pattern, (b) spectrogram of
inverted signal, (c) original spectrogram with pitch har-
monics, (d) spectrogram of inverted signal with pitch.
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In this work, we use a cochlear model designed by Richard F. Lyon
[8]. Sound is filtered by a cascade of band-pass filters. The output
of each filter is half-wave rectified to simulate the hair cell detector
and then passed through a coupled multi-stage automatic gain con-
trol (AGC) to simulate the adaptation processes. Each filter output,
after detection and AGC, is called a channel; typically 50-100 chan-
nels are used to model the cochlear processing. The output of this
model is a sample-by-sample estimate of the probability of firing of
the auditory nerve fibers.

 

Inversion

 

The inversion process for this cochlear model includes three stages
• Invert the AGC,
• Replace portions of the waveform lost by the detector, and
• Sum channels correctly. 

We will describe the inversion process from output back to input. A
similar process is also possible with other cochlear models
designed by Irino [9] and Shamma [10].

Each stage of the AGC uses its output level to set its gain. Since the
AGC gain is directly observable, we can easily compute the state of
each AGC stage at any point in time. Each AGC stage is inverted by
dividing the known AGC output, by the calculated gain. There are
issues of stability, but these are minimized by keeping the input sig-
nal level low. High input signals lead to very small AGC gains.
When the AGC is inverted by dividing these small numbers into the
signal, noise and numerical imprecision lead to errors. This is an
issue when using the output of the correlogram inversion process
described in the next section.

Inverting the (half-wave) detector non-linearity is a classic use of
convex projection. For each channel of cochlear output, we know
the positive values of the filter output. We also know that each filter
output has a relatively narrow bandwidth. We can use these two
constraints to invert the half-wave rectifier. Bandpass filtering
works especially well since one effect of rectification is to add har-
monics of the original signal.

An even more efficient algorithm is possible since we know each
channel is related to its neighbors. In the end, we want to “invert”
each cochlear filter and combine channels into a single waveform.
Thus we can postpone the half-wave rectifier inversion by combin-
ing it with the filter inversion.

The final step, inverting a bank of filters, is easiest if we realize that
we only care about the ensemble of filters. It is simple to invert the
transfer function of a filter, thus adding gain to the signal where it
was first attenuated. But this is not a good solution since each filter
removes large portions of the spectrum. A better solution is to use
the information from other channels.

We can combine channels for the filterbank inversion by correcting
for the filter’s phase characteristics and then summing all the phase-
corrected channels. We might, for example, have 60% of the energy
at any one frequency in channel 42, and another 30% in channel 43.
If we invert the filter-induced phase of these two channels we only
need to increase the gain a bit to restore the amplitude of the signal
at that frequency.

Phase correction is accomplished by either running the signal back-
wards through the original filter, or reversing the filter’s impulse
response so it is noncausal.
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 The effect is the same in either case.
The spectral gain seen by a channel in the filter bank is squared.

The effect of this is minimal since the gain in each filter’s passband
is close to one. More importantly, the phase change at each fre-
quency is cancelled out. After inverting and summing all channels
we are left with a waveform that has exactly the right phase, but an
overall spectral tilt due to the spacing of the filters. This tilt is gen-
tle compared to the original bandpass filter response and thus easy
to correct.

We now return to the subject of the half-wave rectifier inversion.
We know that each channel is bandlimited. We could design a spe-
cial filter to do the projection, but a more efficient solution is to
combine this stage with the filtering performed for the filter-bank
inversion. The more efficient scheme is diagrammed in Figure 4.

 

Results

 

In general, results of the cochlear inversion are perceptually identi-
cal to the original waveform. As long as numerical instabilities have
not overwhelmed the AGC inversion, the procedure is well
behaved. The half-wave rectifier inversion is accurate. What little
information is not available from the original waveform is easy to
recover because there are two to four channels covering every fre-
quency. The negative portions of a waveform not present in one
channel will often be at a slightly different phase in the adjacent
channel and easy to incorporate.

Figure 5 shows typical reconstructions from cochleagrams.
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 The
top plots show reconstructions of an impulse. Extra iterations do
improve the result, removing noise from the initial reconstructions. 

Like the spectrogram, the cochleagram inversion can be used to
generate interesting sound transformations. More importantly it
also gives us a way to simulate the effects of hearing deficiencies.
One such deficiency is the loss of compression that often accompa-
nies old age. The effect of such a simulation is shown in Figure 5.
The bottom-left quarter of this figure shows a normal inversion.
The right half shows the result without inverting the AGC. The
result is a sound that is highly compressed, much the way the audi-
tory system compresses the signal.

 

3. This is exactly the procedure used in analysis/resyn-
thesis filter banks.

4. The syllable “tap” used in many examples in this 
paper are samples 14000 through 17000 of the “train/
dr5/fcdf1/sx106/sx106.adc” utterance in the TIMIT 
Speech Database.
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Figure 4 - A more efficient method for inverting the detec-
tor and the filter bank is shown here.
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5. CORRELOGRAMS

Use and Calculation

 

Both spectrogram and cochleagrams are complete representations
of a sound. That is, they both encode all the information in the
sound. But neither encoding method is perceptually useful.

The correlogram has been proposed as the next stage of processing
after the cochlea. Auditory nerve firings are analyzed in such a way
as to summarize the periodicities in the neural firing rates. These
periodicities are key to understanding pitch perception and we
believe are the fundamental representation that makes it possible
for us to understand one of many simultaneous speakers [7].

Unlike the previous representations, a correlogram is a three-
dimensional representation of sound. Figure 1 shows the sequence
of steps that lead to a correlogram and one frame of a correlogram
movie. Each frame of the correlogram shows frequency (or more
precisely cochlear position) along the vertical axis. The horizontal

Figure 5 - The plots on top are magnified cochleagram
reconstructions of an impulse. The gentle curve is caused
by the loss of low-frequency information in the cochlear
model. The bottom plots show reconstructions of the word
“tap” with and without the AGC inversion.
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axis is a function of autocorrelation delay, and the movie frames
change with time.

Correlograms are interesting because the two most important com-
ponents of a sound, the pitch and the overall spectral shape, are dis-
played on orthogonal axes. The pitch shows up as a dark vertical
line at the autocorrelation time delay corresponding to the domi-
nant periodicity in the audio signal. Formants, and other character-
istics of the audio spectrum, show up as horizontal bands.

Correlograms are calculated using autocorrelations of each
cochlear channel’s output. At each time we wish to sample the out-
put movie, we compute an autocorrelation of each channel’s recent
neural firing rate. The neural data is windowed, FFTs are calcu-
lated, squared, and then inverted to arrive at the autocorrelation. By
assembling all of these autocorrelations in the proper order we can
build a correlogram movie.

Inverting the correlogram takes two steps. First we need to invert
the autocorrelation calculation to arrive at an estimate of each chan-
nel’s cochlear output. Then the cochlear output can be inverted to
arrive at an estimate of the original waveform. The next two sub-
sections of this paper talk about the autocorrelation inversion, and
steps that can be taken to speed up the convergence.

 

Inversion–Transform to Spectrogram

 

Correlograms are easy to invert by noting that autocorrelation is
related to the power spectrum of a signal. For each cochlear chan-
nel, we assemble all the autocorrelations and calculate the corre-
sponding power spectrums. The power spectrum, for each window
of data, is equal to the square of the spectrogram magnitude and
can be inverted as described in Section 3 of this paper.

This process is shown in Figure 6. The resulting spectrogram is
interesting because it represents a narrow band waveform that has
been half-wave rectified. The half-wave rectification adds the har-
monics that are seen.

 

Inversion–Phase Guesses

 

Like all convex projection procedures, better initial guesses dramat-
ically reduce the number of iterations needed to achieve conver-
gence. In correlogram inversion we can propagate the phase in two
different directions. As described in spectrogram inversion, we can
predict the phase as we build the waveform from left to right using

Frame 42 of Correlogram Frame 43 of Correlogram
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Figure 6 - The steps in correlogram inversion are shown above. Each channel of a correlogram is converted to a power spectrum
using an inverse FFT. Then the spectrogram can be inverted to find the output of the cochlear channel. The dark vertical line in the
spectrogram is from the “t” in “tap”. The horizontal bands show the passband and the harmonic distortion due to the half-wave
detector. (Adapted from [3])
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cross-correlation. Similarly, in correlogram inversion we can use
the final phase estimate from one channel to initialize the phase for
the next channel. This works since one channel overlaps spectrally
with its neighbor.

 

Results

 

Reconstructions from correlograms are shown in Figure 7. A series
of impulses and the word “tap” are used as input to a cochlear
model and a correlogram frame is calculated every 64 samples.
Each channel of the correlogram is inverted as shown in Figure 6 to
estimate the waveforms shown. 

On the left of Figure 7, the reconstructions are done without any
iterations and the resulting sounds are muffled. The pitch is correct
because the initial channels are lined up using the phase-rotation
method described in Section 3. The images on the right of Figure 7
are iterated reconstructions. Ten iterations of the spectrogram inver-
sion are used for the first channel (high-frequency channel), and
three iterations are used for each successive channel. Lastly, ten
iterations of the cochleagram inversion are used to estimate the
final sound waveform. The iterated reconstructions sound nearly
identical to the original waveforms.

The impulses do not line up as well as the original waveform due to
phase mismatches across the filterbank. Unless the entire correlo-
gram inversion process is iterated, thus closing the loop, the relative
timing between the first and the last channel of the correlogram
inversion will not necessarily be synchronized. However, this rela-
tively modest phase change across the entire range of hearing does
not affect our perception.

 

6. CONCLUSIONS

 

We have demonstrated pattern playback from three different types
of auditory representations. Reconstructions from the spectrogram
and cochleagram are indistinguishable from the original sound. In
informal listening tests, the correlogram reconstructions are nearly

Figure 7 - Four correlogram reconstructions are shown,
with and without iterations. The top two are from an
impulse train, the bottom two are of the word “tap”. The
reconstructions without iterations are muffled while the
iterated results sound nearly identical to the original wave-
form.
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identical. This is noteworthy since compared to other representa-
tions more sounds can be represented (than LPC) and there are
fewer thresholds to set (than sinusoidal analysis).

Convex projections are the key to these techniques, but better initial
estimates make a big difference in the quality of the reconstruction.
A new algorithm described here for rotating the phase of the spec-
trogram inversion is perhaps the most important key to the suc-
cesses. Future work will look at reconstructions from partial
information.
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