
Visualizing Music and Audio using Self-Similarity 
Jonathan Foote 

FX Palo Alto Laboratory, Inc. 
3400 Hillview Ave., Building 4 

Palo Alto, CA 94304 USA 
+ 1 (650) 813-7071 

foote @ pal.xerox.com 

1. ABSTRACT 
This paper presents a novel approach to visual- 
izing the time structure of music and audio. The 
acoustic similarity between any two instants of 
an audio recording is displayed in a 2D repre- 
sentation, allowing identification of structural 
and rhythmic characteristics. Examples are 
presented for classical and popular music. 
Applications include content-based analysis 
and segmentation, as well as tempo and struc- 
ture extraction. 
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2. INTRODUCTION 
There has been considerable interest in making music 
visible. Most approaches quantitatively render the time and/ 
or frequency content of the audio signal, using methods such 
as the oscillograph and sound spectrograph [l], [2]. Other 
visualizations are derived from note-based or score-like 
representation of music, typically from MIDI note events 
[31. 

Music is generally self-similar. With the possible exception 
of a few avant-garde compositions, structure and repetition 
is a general feature of nearly all music. That is, the coda 
often resembles the introduction, the second chorus sounds 
like the first. On a shorter time scale, successive bars are 
often repetitive, especially in popular music. This paper 
presents a novel method of visualizing music by its acoustic 
similarity or dissimilarity in time, rather than absolute 
acoustic characteristics. Self-similarity is visualized in a 
two-dimensional representation of time, such as Figure I. 

An audio file is represented as a square. Time runs from left 
to right as well as from bottom to top. Thus the bottom left 
comer of the square corresponds to the beginning of the 
piece, while the top right corresponds to the end. In the 
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square, the brightness of a point (i$) is proportional to the 
audio similarity at instants i andj. Similar regions are bright 
while dissimilar regions are dark. Thus there is always a 
bright diagonal line running from bottom left to top right, 
because the audio is always the most similar to itself at any 
particular time. Repetitive similarities, such as repeating 
notes or motifs, show up as a checkerboard pattern: a note 
repeated twice will give 4 bright areas at the corner of a 
square. The lower left area corresponds to the first instance 
of the note while the upper right region corresponds to the 
second. The two remaining regions at the off-diagonal 
comers are the “cross-terms” resulting from the first note’s 
similarity to the second. Repeated themes are visible as 
diagonal lines parallel to, and separated from, the main 
diagonal by the time difference between repetitions. 

2.1 Audio parameterization 
To calculate the similarity between two audio “instants,” 
they are first parameterized using the short-time fourier 
transform resulting a spectrogram. Figures 5 and 6 use this 
representation. Alternatively, Figures 1 and 7 were 
constructed from a Mel-frequency cepstral representation, 
including an energy term. The short paper format does not 
permit a fuller discussion; the interested reader is referred to 
[4] for further details. 

2.2 Similarity Measure 
Given two feature vectors vi and vj derived from audio 
windows i andj, a simple metric of vector similarity s is the 
scalar product of the vectors. This will be large if the vectors 
are both large and similarly oriented. To remove the 
dependence on magnitude (and hence energy, given our 
features), the product can be normalized to give the cosine 
distance between the vectors: 

“. . “. 
s(i, j) = Ivi/lv/l 

Because windows, hence feature vectors, occur at a rate 
much faster than typical musical events, a better similarity 
measure S can be obtained by computing the vector 
correlation over a window w. Thus 

w- 1 

S,.(i. j) E i, C s(i + k. j + k) 
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Figure 1. Self-similarity visualization of drum pattern 

This also captures the time dependence of the vectors, and 
serves as the similarity metric used for the images in this 
paper. 

2.3 Visualization Method 
To visualize an audio file, an image is constructed so that 
each pixel at location i, j is given a grayscale value 
proportional to the similarity measure. Below are some 
examples; the time scales are seconds. For reasons of 
resolution and space most images are from small excerpts of 
longer works. 

2.4 “Drum Solo” Example 
Figure 1 is a sampled “drum solo,” taken from an audio test 
CD. The solo starts with a snare drum roll, followed by a 
syncopated alternation of kick and snare hits and cymbal 
accents. The alternation of instruments is particularly visible 
in this Figure. For example, the 2 x 2 “checkerboard” 
between the second and third seconds of the recording is a 
snare drum hit followed by a kick drum hit. This sequence is 
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Figure 2. Graph of self-similarity vs. time 

reversed (kick, then snare) between seconds 3 and 4. 

Figure 2 shows the autocorrelation as a more conventional 
plot. Because both instrument and timing information could 
be automatically derived from the plot, this information 
could be used to generate a MIDI representation of the 
source music, which is in general a very difficult problem 
for unpitched instruments 

2.5 Bach Prelude 
Figure 4 shows roughly the first two bars of Bach’s Prelude 
No. I in C Ah&w, from The Well-Tempered Clavier, BVW 846. 
This 1963 pmno performance is by Glenn Gould. The 
visualization makes both the structure of the piece and 
details of performance visible. 34 notes are visible as 
squares along the diagonal. The repetition time can be seen 
in the off-diagonal stripes parallel to the main diagonal, as 
well as the repeated C note at 0, 2, 4, and 6 seconds. Figure 
3 shows the first three bars of the score: the repetitive nature 
of the piece should be clear even to those unfamiliar with 
musical notation. Figure 5 shows a similar excerpt, this time 
from a MIDI realization using a passable piano sample and 
a strict tempo. Beginning silence is also visible as a square 
at lower left. Here, unlike the human performance, all notes 
have exactly the same duration and articulation. Figure 6 
shows yet another similarity image of the same music, 
derived directly from the MIDI data. Here, no acoustic 
information was used. Matrix entries (i,j) were colored 
white if note i was the same pitch as notej, and left black 
otherwise. (Overlapping notes, such as the initial C, were 
ignored.) Clearly the structures of all three figures are 
highly similar, indicating that they do indeed capture the 
underlying structure of the music. 

Figure 3. First bars of Bach’s Prelude No. Z in C Major, BVW 846, from The Well-Tempered Chvier 
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Figure 4. Self-similarity of Bach’s Prelude No. 1 

2.6 Day Tripper by the Beatles. 
Figure 7 shows the entire song Day Tripper by the Beatles. 
The image has been annotated to show the canonical pop 
song structure. Vocals in the first verse start at about 18 
seconds; the 4 vocal phrases (“Got a good reason...“) can be 
seen echoed in the second verse (‘She’s a big teaser...“) 
about 20 seconds later. The chorus starts at about 30 
seconds; the prominent feature at 40 seconds is the 
sustained “so” C‘it took me so long/to find out”) which is 
recapitulated halfway through the second verse at 75 
seconds. Note that the “so” of the third chorus (130 seconds) 
is not similar to the preceding choruses as it is sung in 
falsetto. The signature guitar riff is particularly clear in both 
the introduction and its note-for-note recapitulation in the 
coda, and is also visible in the verses and outro, which fades 
out. The bar-by-bar and section-by-section periodicity are 
evident in the diagonal lines prevalent throughout the 
image. 

3. Retrieval by Similarity 
These visualizations show how acoustically similar 
passages can be located in an audio recording. Similarity 
can also be found across recordings as well as within a 
single recording. As an immediate application, this would 
be useful wherever known music or audio needs to be 
located in a longer file. For example, it would be a simple 
matter to find the locations of the theme music in a news 
broadcast, or the times that advertisements occur in a TV 
broadcast if the audio was previously available. In this case, 
the similarity measure would be computed between all 

Fig 

25 

Figure 6. Self-similarity of Prelude No. 2 computed from MIDI 
data only -- no acoustic information was used. 
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Figure 7. Day Tripper by LennodMcCartney 

frames of the source commercial and the TV broadcast, 
resulting in a rectangular similarity matrix. Advertisement 
onset times could be determined by thresholding the 
similarity matrix at some suitable value. 

The structure of most music is sufficient to characterize the 
work. As proof by example, human experts can identify 
music and sound by visual structure alone. Victor Zue of 
MIT teaches a course in “reading” sound spectrographs. In a 
double-blind test, Arthur G. Lintgen of Philadelphia was 
able to distinguish unlabeled classical recordings by 
identifying the softer and louder passages visible in the LP 
grooves [7]. These examples indicate that the visualization 
method presented here might be useful for music retrieval 
by similarity. Not only can acoustical!,~ similar audio be 
located, but srrucrurall~ similar audio should be 
straightforward to find, by comparing similarity 
visualizations. For example, different performances of the 
same score should have a similar structural visualization 
regardless of how or when they were performed or recorded, 
or indeed the instruments used. 

3.1 Structure/Tempo Extraction 
Unlike practically all prior work, this method characterizes 
self-similarity rather than specific audio attributes such as 
spectrum or pitch. Given the audio of a particular 
performance and a MIDI file representation of the same 
piece, as on Figures 5 and 6, it would be possible to warp 
the similarity matrix from the known-tempo MIDI rendition 
to match that of the original performance. The warping 
function would then serve as a tempo map, allowing the 
MIDI file to be played back with the tempo of the original 

performance. Other indications of tempo and structure could 
be similarly derived from the similarity map. 
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