
� � � � � � � � 	

�

��

��

��

��

��

�

��

��

���������������

�
���

�

�������

���	�
������

�����������������

��������������������������������

Music Cognition Group

MIDI Toolbox

MATLAB Tools
for Music Research

Tuomas Eerola & Petri Toiviainen

Copyright ©: Tuomas Eerola & Petri Toiviainen
Cover & layout: Tuomas Eerola & Petri Toiviainen
Publisher: Department of Music, University of Jyväskylä, Finland
Printing and binding: Kopijyvä, Jyväskylä, Finland
ISBN: 951-39-1796-7 (printed version)
ISBN: 951-39-1795-9 (pdf version)

Document data:
Eerola, T. & Toiviainen, P. (2004). MIDI Toolbox: MATLAB Tools for Music

Research. University of Jyväskylä: Kopijyvä, Jyväskylä, Finland.
Electronic version available from: http://www.jyu.fi/musica/miditoolbox/

http://www.jyu.fi/musica/miditoolbox/

■ CONTENTS 4

■ MIDI Toolbox ■

CONTENTS

■ CHAPTER 1 – INTRODUCTION.. 6

■ CHAPTER 2 – INSTALLATION... 8

■ CHAPTER 3 – BASIC OPERATIONS.. 9

■ CHAPTER 4 – EXAMPLES ... 15

■ EXAMPLE 1: VISUALIZING MIDI DATA... 15
■ EXAMPLE 2: MELODIC CONTOUR.. 21
■ EXAMPLE 3: KEY-FINDING... 24
■ EXAMPLE 4: METER-FINDING.. 29
■ EXAMPLE 5: MELODIC SEGMENTATION.. 32
■ EXAMPLE 6: MELODIC EXPECTATIONS... 34
■ EXAMPLE 7: MELODIC COMPLEXITY.. 37
■ EXAMPLE 8: ANALYZING MIDI COLLECTIONS .. 38
■ EXAMPLE 9: MELODIC SIMILARITY... 41
■ EXAMPLE 10: CREATING SEQUENCES ... 43
■ REFERENCES.. 45

■ CHAPTER 5 – FUNCTION REFERENCE... 48

■ ALPHABETICAL INDEX OF FUNCTIONS .. 96

■ CHAPTER 1 – INTRODUCTION 6

■ MIDI Toolbox ■

CHAPTER 1 – INTRODUCTION
MIDI Toolbox provides a set of Matlab functions, which together have all the
necessary machinery to analyze and visualize MIDI data. The development of the
Toolbox has been part of ongoing research involved in topics relating to musical data-
mining, modelling music perception and decomposing the data for and from
perceptual experiments. Although MIDI data is not necessarily a good representation
of music in general, it suffices for many research questions dealing with concepts
such as melodic contour, tonality and pulse finding. These concepts are intriguing
from the point of view of music perception and the chosen representation greatly
affects the way these issues can be approached. MIDI is not able to handle the timbre
of music and therefore it unsuitable representation for a number of research questions
(for summary, see Hewlett and Selfridge-Field, 1993-94, p. 11-28). All musical
signals may be processed from acoustic representation and there are suitable tools
available for these purposes (e.g. IPEM toolbox, Leman et al., 2000). However, there
is a body of essential questions of music cognition that benefit from a MIDI-based
approach. MIDI does not contain notational information, such as phrase and bar
markings, and neither is that information conveyed in explicit terms to the ears of
music listeners. Consequently, models of music cognition must infer these musical
cues from the pitch, timing and velocity information that MIDI provides. Another
advantage of the MIDI format is that it is extremely wide-spread among the research
community as well as having a wider group of users amongst the music professionals,
artists and amateur musicians. MIDI is a common file format between many notation,
sequencing and performance programs across a variety of operating systems.
Numerous pieces of hardware exist that collect data from musical performances,
either directly from the instrument (e.g. digital pianos and other MIDI instruments) or
from the movements of the artists (e.g. motion tracking of musician’s gestures, hand
movements etc.). The vast majority of this technology is based on MIDI
representation. However, the analysis of the MIDI data is often developed from
scratch for each research question. The aim of MIDI Toolbox is to provide the core
representation and functions that are needed most often. These basic tools are
designed to be modular to allow easy further development and tailoring for specific
analysis needs. Another aim is to facilitate efficient use and to lower the “threshold of
practicalities”. For example, the Toolbox can be used as teaching aid in music
cognition courses.

This documentation provides a description of the Toolbox (Chapter 1), installation
and system requirements (Chapter 2). Basic issues are explained in Chapter 3. Chapter
4 demonstrates the Toolbox functions using various examples. The User’s Guide does
not describe any of the underlying theories in detail. Chapter 5 focuses on a collection
format and Chapter 6 is the reference section, describing all functions in the Toolbox.
The online reference documentation provides direct hypertext links to specific
Toolbox functions. This is available at http://www.jyu.fi/musica/miditoolbox/

http://www.jyu.fi/musica/miditoolbox/

7 CHAPTER 1 – INTRODUCTION ■

■ MIDI Toolbox ■

This User’s Guide assumes that the readers are familiar with Matlab. At the moment,
the MIDI Toolbox is a collection of Matlab functions that do not require any extra
toolboxes to run. Signal processing and Statistics toolboxes – both available
separately from Mathworks – offer useful extra tools for the analysis of perceptual
experiments.

MIDI Toolbox comes with no warranty. This is free software, and you are welcome to
redistribute it under certain conditions. See License.txt for details of GNU
General Public License.

We would like to thank various people contributing to the toolbox. The conversion to
and from MIDI file is based on the C source code by Piet van Oostrum, which, in
turn, uses the midifile library written by Tim Thompson and updated by Michael
Czeiszperger. Brian Cameron found out some sneaky bugs in the aforementioned C
source code. Micah Bregman helped to check parts of the manual and wrote out some
new functions.

Comments, suggestions or questions?
Many functions are still not completely tested in MIDI Toolbox version 1.0. Check
the online forum for corrections and revisions:
http://www.jyu.fi/musica/miditoolbox/forum.html

Alternatively, you can report any bugs or problems to:

Tuomas Eerola, Petri Toiviainen
{ptee, ptoiviai}@cc.jyu.fi

Department of Music
University of Jyväskylä
P.O. BOX 35
40014 University of Jyväskylä
Finland

http://www.jyu.fi/musica/miditoolbox/forum.html

■ CHAPTER 1 – INTRODUCTION 8

■ MIDI Toolbox ■

CHAPTER 2 – INSTALLATION
Availability
The whole toolbox is available either as a zipped package from the internet
(http://www.jyu.fi/musica/miditoolbox/).

Installation
Unpack the MIDI Toolbox file package you have downloaded. For this, use a program
like Winzip for Windows and Stuffit Expander for Macintosh. This will create a
directory called miditoolbox. Secondly, a version of the Matlab program needs to be
installed (see www.mathworks.com). Thirdly, the Toolbox needs to be defined in
the Matlab path variable.

Windows (98, 2000, XP)
The MIDI Toolbox version 1.0 is compatible with Matlab 5.3 and Matlab 6.5.

Macintosh (OS X)
The MIDI Toolbox version 1.0 is compatible with Matlab 6.5 for Macintosh.

Linux
Currently not tested but should be compatible.

http://www.jyu.fi/musica/miditoolbox/
http://www.mathworks.com

9 CHAPTER 3 – BASIC OPERATIONS ■

■ MIDI Toolbox ■

CHAPTER 3 – BASIC OPERATIONS

Basic issues
In this tutorial, we assume that the reader has basic knowledge of the Matlab
command syntax. Many good tutorials exist in the Internet, see:
 http://www.math.ufl.edu/help/matlab-tutorial/
 http://www.math.mtu.edu/~msgocken/intro/intro.html
 http://www.helsinki.fi/~mjlaine/matlab/index.html (in Finnish)
 http://www.csc.fi/oppaat/matlab/matlabohje.pdf (in Finnish)

In the following examples, the commands that are typed to Matlab command prompt
are written in monospaced font and are preceded by the » sign. Help is also
available within the Matlab session. For example, to understand what a particular
function does, type help and the name of the function at the command prompt. For
example, to obtain information about how the pitch-class distribution function works,
type:

 » help pcdist1

To see a list of all available functions in the Toolbox, type:

 » help miditoolbox

Reading MIDI files into Matlab
The basic functions in MIDI Toolbox read and manipulate type 0 and type 1 MIDI
files. The following command reads and parses a MIDI file called laksin.mid and
stores it as a matrix of notes called nmat in Matlab’s workspace:

 » nmat = readmidi('laksin.mid');

This particular MIDI file contains the first two verses of a Finnish Folk song called
"Läksin minä kesäyönä" (trad.).

Basic terms
Notematrix (or nmat) refers to a matrix representation of note events in a MIDI file.
We can now type nmat and see what the notematrix of the folk song looks like.

http://www.math.ufl.edu/help/matlab-tutorial/
http://www.math.mtu.edu/~msgocken/intro/intro.html
http://www.helsinki.fi/~mjlaine/matlab/index.html
http://www.csc.fi/oppaat/matlab/matlabohje.pdf

■ CHAPTER 3 – BASIC OPERATIONS 10

■ MIDI Toolbox ■

 » nmat

nmat =
0 0.9000 1.0000 64.0000 82.0000 0 0.5510
1.0000 0.9000 1.0000 71.0000 89.0000 0.6122 0.5510
2.0000 0.4500 1.0000 71.0000 82.0000 1.2245 0.2755
2.5000 0.4500 1.0000 69.0000 70.0000 1.5306 0.2755
3.0000 0.4528 1.0000 67.0000 72.0000 1.8367 0.2772
3.5000 0.4528 1.0000 66.0000 72.0000 2.1429 0.2772
4.0000 0.9000 1.0000 64.0000 70.0000 2.4490 0.5510
5.0000 0.9000 1.0000 66.0000 79.0000 3.0612 0.5510
6.0000 0.9000 1.0000 67.0000 85.0000 3.6735 0.5510
7.0000 1.7500 1.0000 66.0000 72.0000 4.2857 1.0714

We see that the variable nmat contains a 7 x 10 matrix filled with numbers. The
columns refer to various types of information such as MIDI pitch and MIDI channel.
The rows stand for the individual note events (in this case, the melody has 10 notes
and each of them is described in terms pitch, onset time, duration, volume and so
forth). The labels of the columns are as follows:

 ONSET DURATION MIDI MIDI VELOCITY ONSET DURATION
(BEATS) (BEATS) channel PITCH (SEC) (SEC)

The first column indicates the onset of the notes in beats (based on ticks per quarter
note) and the second column the duration of the notes in these same beat-values. The
third column denotes the MIDI channel (1-16), and the fourth the MIDI pitch, where
middle C (C4) is 60. The fifth column is the velocity describing how fast the key of
the note is pressed, in other words, how loud the note is played (0-127). The last two
columns correspond to the first two (onset in beats, duration in beats) except that
seconds are used instead of beats.

Often one wants to refer only to pitch or duration values in the notematrix. For clarity
and convenience, these columns may be called by few basic selector functions that
refer to each specific column only. These are onset (either 'beat' or 'sec', the
former is the default), dur (either 'beat' or 'sec'), channel, pitch,
and velocity. For example, pitch(nmat) returns only the MIDI notes values of
the notematrix and onset(nmat) returns only the onset times (in beats) of the events
in the notematrix.

Collection format
Large corpora of music are more convenient to process in Matlab if they are stored in
Matlab’s own cell structures rather than keeping them as MIDI files that are loaded
separately for the analysis. You can store multiple notematrices in cell structures from
a directory of MIDI files by using dir2cellmatr function. The function processes
all MIDI files in the current directory and stores the notematrices and the filenames in
the variables of your choice:

 » [demo_collection,filenames] = dir2cellmatr;

After creating cell matrix structure of the MIDI files, individual notematrices can be
called by the following convention:

11 CHAPTER 3 – BASIC OPERATIONS ■

■ MIDI Toolbox ■

 » tune1 = demo_collection{1};

With large collections of MIDI files applying the analyzecoll function to a cell
structure is preferred to analyzing the MIDI files separately (by using the
analyzedir function). This is because in the former case the files need not be
converted into Matlab format, which increases the speed of the analysis greatly.
Example 8 in Chapter 4 illuminates the use of the collection format.

Future changes to the notematrix representation
MIDI files often contain a wealth of other information than the one pertaining to note
events. Tick type information, tempo, key signature, meter signature, copyright notes,
lyrics, track names, various types of controller data and changes in these across time
are commonly included in MIDI files. Some of these details would be useful for
certain types of analyses. However, at this stage only hold pedal information is
retained in the conversion from MIDI file to notematrix. In the next version of the
Toolbox, we are considering storing these details in the Matlab Field Structures. The
drawback of this improvement is that it will also change way the existing functions
are called. In future version we are also planning to include a graphical user interface
for common operations and analyses.

Combining functions
Functions in Matlab can be combined:

 » plotdist(pcdist1(nmat))

In the example, function pcdist1 calculates the pitch-class distribution of the
notematrix nmat and then uses the command plotdist to create a labeled bar
graph of the distribution.

Saving variables
Variables in Matlab can be saved using the command save filename. This
command saves all variables in Matlab session to a Matlab matrix file (filename.mat)
on the hard disk. It is often useful to use the clear command to purge unnecessary
variables from the Matlab session before saving the variables.

Saving MIDI files
A notematrix can be converted into a MIDI file by using the writemidi command.
The syntax of the command is:

 writemidi(nmat,ofname,<tpq>,<tempo>,<tsig1>,<tsig2>)

In the command syntax, nmat refers to the notematrix, ofname to the name of the
generated MIDI file. There are some other parameters that are optional (denoted by
the brackets). For example, you have created a new notematrix called probemelody
that contains a sequence from the probe-tone experiments and want to save the
sequence into a MIDI file named probemelody.mid. The following command writes
the MIDI file with a tempo of 90 beats per minute.

 » writemidi(probemelody,'probemelody.mid',120, 90);

■ CHAPTER 3 – BASIC OPERATIONS 12

■ MIDI Toolbox ■

Playing notematrices
There are two methods of listening to the contents of a notematrix. The first method
involves playing the MIDI file created by nmat2mf command using the internal MIDI
player of the operating system (such as Quicktime, Mediaplayer or Winamp). This
method uses the following command:

 » playmidi(nmat)

This function is dependent on the operating system. In Windows, use
definemidiplayer function and choose a midi player of your choice by browsing
and selecting the correct executable from your hard disk (Media Player, Winamp, etc).
This function writes the path and the filename down to midiplayer.txt in MIDI
Toolbox directory for future use. In MacOS X, the path is already predefined in the
abovementioned files.

The second method is to synthesize the notematrix into waveform using nmat2snd
function. This is computationally more demanding, especially if the notematrix is
large. Matlab can render these results into audible form by using sound or soundsc
function or alternatively the waveform may be written into a file using wavwrite
function. Simple way to hear the notematrix is type:

 » playsound(nmat);

Referring to parts of a notematrix
Often one wants to select only a certain part of a notematrix for analysis. For example,
instead of analyzing the whole MIDI sequence, you may wish to examine the first 8
bars or select only MIDI events in a certain MIDI channel. Basic selection is
accomplished using Matlab’s own index system, for example:

 » first_12_notes = laksin(1:12,:);

It is also possible to refer to MIDI Toolbox definitions and functions when selecting
parts of the notematrix. The following examples give a few ideas of how these may be
used. Many of these functions belong to the filter category (see Chapter 6).

 » first_4_secs = onsetwindow(laksin,0,4,'sec');

 » first_meas = onsetwindow(laksin,0,3,'beat');

 » between_1_and_2_sec = onsetwindow(laksin,1,2,'sec');

 » only_in_channel1 = getmidich(laksin,1);

 » remove_channel10 = dropmidich(laksin,10);

 » no_short_notes = dropshortnotes(laksin,'sec',0.3)

Manipulating note matrices
Often one wants to find and manipulate the tempo of a notematrix. Here’s an example
of how the tempo is obtained and then set to a faster rate.

13 CHAPTER 3 – BASIC OPERATIONS ■

■ MIDI Toolbox ■

 » tempo = gettempo(laksin)
 » tempo = 98.000
 » laksin_128bpm = settempo(laksin,128);

To scale any values in the notematrix, use scale command:

 » laksin_with_halved_durations = scale(laksin,'dur',0.5);

One can assign any parameter (channel, duration, onset, velocity, pitch) in the
notematrix a certain fixed value. For instance, to set all note velocities to 64,
setvalues command may be used:

 » laksin_velocity64 = setvalues(laksin,'vel',64);

Transposing the MIDI file is also a useful operation. This example transposes the folk
tune Läksin a major third down (minus four semitones).

 » laksin_in_c = shift(laksin,'pitch',-4);

Transposition can also be done to a velocity or channel information of the notematrix.
Here’s an example of channel alteration.

 » laksin_channel2 = shift(laksin,'chan',1);

If you do not know the key of the MIDI file and wish to transpose the file to a C
major or C minor key, it can be performed using the transpose2c function. This
method draws on a built-in key-finding algorithm, which is described later.

 » laksin_in_c = transpose2c(laksin);

It is also possible to combine different notematrices using Matlab’s regular command
syntax. To create Finnish folk tune Läksin in parallel thirds, use:

 » laksin_parallel_thirds = [laksin; laksin_in_c];

Sometimes a notematrix might need to be quantized. This is relatively easy to carry
out using quantize function. In this example, a Bach prelude is quantized using
sixteenth beat resolution. The first argument quantizes the onsets, the second
argument the durations and the third argument filters out notes that are shorter than
the criteria (sixteenth notes in this case):

 » prelude_edited = quantize(prelude, 1/16,1/16,1/16);

In many cases one wishes to eliminate certain aspects of the notematrix. For example,
a simple way to get the upper line of the polyphonic notematrix is to use extreme
function:

 » prelude_edited = extreme(prelude_edited,'high');

Also, leading silence in notematrix is something that often is unnecessary. This can be
removed using the trim function:

■ CHAPTER 3 – BASIC OPERATIONS 14

■ MIDI Toolbox ■

 » prelude_edited = trim(prelude_edited);

Demonstrations
Demonstrations, which are loosely based on the examples described in the next
chapter, are available in the MIDI Toolbox directory. Type in mididemo to go
through the demos.

15 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

CHAPTER 4 – EXAMPLES
Example 1: Visualizing MIDI Data

The pianoroll function displays conventional pianoroll notation as it is available in
sequencers. The function has the following syntax:

pianoroll(nmat,<varargin>);

The first argument refers to the notematrix and other arguments are optional. Possible
arguments refer to axis labels (either MIDI note numbers or note names for Y-axis
and either beats or seconds for the X-axis), colors or other options. For example, the
following command outputs the pitch and velocity information:

 » pianoroll(laksin,'name','sec','vel');

Figure 1: Pianoroll notation of the two first phrases of Läksin minä kesäyönä. The lower panel
shows the velocity information.

Figure 2. Notation of first two verses of the Finnish Folk tune "Läksin minä kesäyönä".

0 1 2 3 4 5 6 7 8 9 10
C4#
D4
D4#
E4
F4
F4#
G4
G4#
A4
A4#
B4
C5
C5#

Time in seconds

Pi
tc

h

0 1 2 3 4 5 6 7 8 9 10
0

20

40
60

80
100

120

Time in seconds

Ve
lo

ci
ty

■ CHAPTER 4 – EXAMPLES 16

■ MIDI Toolbox ■

Pianoroll output is rather straightforward to interpret. If you compare it with notation
of the same song (Figure 2), you can easily see the differences and similarities
between pianoroll and traditional notation.

Polyphonic and more elaborate MIDI files can also be visualised using pianoroll
notation. Also, the time axis can be set to display beats rather than seconds and the
pitch height axis can be set to show MIDI pitch numbers. For example, to plot first
five measures (i.e., 5 * 4 beats per measure = 20 beats) of the Bach’s C-major
Prelude:

 » prelude = readmidi('wtcii01a.mid');
 » prelude5 = onsetwindow(prelude,0,20,'beat');
 » pianoroll(prelude5,'num','beat');

Figure 3. First five measures of Bach's C-major Prelude from Wohltemperierte Klavier II
(BWV 870).

In Figure 3, the horizontal lines indicate Cs and the vertical dotted lines correspond to
onset beats, which in this case have their equivalent in the notation (four beats per
measure). The notation of the C-major Prelude is shown in Figure 13. Furthermore,
MIDI files with several channels may be plotted with pianoroll function, which
highlights the channels by using different colors.

Visualization of distributions
In this example, we have loaded the third movement (Sarabande) from J. S. Bach’s
Partita in A minor for Solo Flute (BWV 1013) into a notematrix called sarabande
(see Figure 4).

0 2 4 6 8 10 12 14 16 18 20
34

39

44

49

54

59

64

69

74

Time in beats

Pi
tc

h

17 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Figure 4. Bach's Flute Sarabande (BWV 1013).

First, we can examine the note distribution of the Sarabande in order to see whether
the key signature is apparent from the distribution of the pitch-classes. The following
command creates a bar chart of the pitch-class distribution of the Sarabande.

 » plotdist(pcdist1(sarabande));

Figure 5. Pitch-class distribution in Bach's Flute Sarabande (BWV 1013).

C C# D D# E F F# G G# A A# B
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pitch-class

P
ro

po
rti

on
 (%

)

■ CHAPTER 4 – EXAMPLES 18

■ MIDI Toolbox ■

The inner function, pcdist1, calculates the proportion of each pitch-class in the
sequence, and the outer function, plotdist, creates the labeled graph. From the
resulting graph, shown in Figure 5, we can infer that the Sarabande is indeed in A
minor key as A, C and E are the most commonly used tones. More about inferring the
key in a separate section on key-finding (Example 3).

Another basic description of musical content is the interval structure. In monophonic
music this is easily compiled, as shown below, but detecting successive intervals in
polyphonic music is a difficult perceptual task and will not be covered here. To see
what kind of intervals are most common in the Sarabande, type:

 » plotdist(ivdist1(sarabande));

Figure 6. Interval distribution in Bach's Flute Sarabande (BWV 1013).

In the middle, P1 stands for unison (perfect first), i.e. note repetitions, which are fairly
rare in this work (P8 stands for perfect octave, m3 is the minor third, M3 is a major
third and so on). Let us compare the distribution of interval sizes and direction to the
results obtained from analysis of large musical corpora by Vos and Troost (1989). To
obtain suitable distributions of Sarabande, we use function ivdirdist1 and
ivsizedist1 (see Figure 7).

-P8 -M6 -d5 -m3 P1 +m3 +d5 +M6 +P8
0

0.05

0.1

0.15

0.2

0.25

Interval

Pr
op

or
tio

n
(%

)

19 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

P
ro

po
rti

on
 a

sc
en

di
ng

 (%
)

MI2 MA2 MI3 MA3 P4 D5 P5 MI6 MA6 MI7 MA7 P8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rti

on
 a

sc
en

di
ng

 (%
)

MI2 MA2 MI3 MA3 P4 D5 P5 MI6 MA6 MI7 MA7 P8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MI2 MA2 MI3 MA3 P4 D5 P5
0

0.05

0.1

0.15

0.2

0.25

P
ro

po
rti

on
 o

f o
cc

ur
re

nc
e

Interval

P1 MI2MA2MI3MA3 P4 D5 P5 MI6MA6MI7MA7 P8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

po
rti

on
 (%

)

Figure 7. The top left panel shows the distribution of interval sizes in Sarabande and the
lower left panels displays the theoretical frequency of occurrence of intervals according to
Dowling and Harwood (1986). The top right panels shows the proportion of the ascending
intervals and the lower right panel displays the same data in collection of folk music (N=327),
compiled by Vos and Troost (1989).

We see in Figure 7 that in the corpus analyzed by Vos and Troost (1989) the interval
structure is usually asymmetric (lower right panel). This means that large intervals
tend to ascend whereas small intervals tend to descend. This is not evident in
Sarabande (panels on the right) as the fifths tend to descend rather than ascend.

Displaying the distributions of two-tone continuations in Sarabande is similar to
displaying tone distributions:

 » plotdist(pcdist2(sarabande));

Distributions in Sarabande

Theoretical distribution Distribution in folk music

■ CHAPTER 4 – EXAMPLES 20

■ MIDI Toolbox ■

Figure 8. The proportion of two-note continuations in Bach's Flute Sarabande (BWV 1013).
The colorbar at the right displays the proportion associated with each colour.

Figure 8 shows the proportion of tone transitions in Sarabande. The most common
transition is from dominant (E) to D and next most common transition is the F to
dominant E. Commonly, the diagonal of the tone transition matrix shows high
proportion of occurrences but this work clearly avoids unisons. The few unisons
shown in the transition matrix are due to octave displacement. Note that these
statistics are different from the interval distributions. It is also possible to view a
distribution of note durations in a similar manner (functions durdist1 and
durdist2).

In Matlab, there are further visualization techniques that can be used to display the
distributions. Quite often, plotting the data using different colors is especially
informative. In some cases, three-dimensional plots can aid the interpretation of the
data (see Example 7 for a three-dimensional version of note transitions.).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Pitch-class 2

P
itc

h-
cl

as
s

1

C C# D D# E F F# G G# A A# B
C

C#

D

D#

E

F

F#

G

G#

A

A#

B

21 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Example 2: Melodic Contour

Melodic contour describes the overall shape of the melody. The contour
representation of a melody is usually easier to remember than exact interval
information (Dowling, 1978; Dowling & Fujitani, 1971) and numerous music
informational retrieval systems use contour to find specific melodies from large music
databases (e.g., Kim et al., 2000; Lemström et al., 2001). Contour is also central in
explorations of “melodic arches”, which describe the typical contours found in the
phrases of Western folk songs (Huron, 1996).

Figure 9 below shows two versions of melodic contour using different degrees of
resolution. The degree of resolution depends upon the value of the sampling step,
expressed in MIDI beats. The larger the resolution, the more coarse the contour. The
dashed line represents a detailed contour with the resolution STEP 0.25. This high
level of detail is not often necessary in dealing with melodic contour. The solid line
represents a coarser melodic contour that might be more useful for finding out the
overall structure of the melody.

 » plotmelcontour(laksin,0.25,'abs',':r.'); hold on
 » plotmelcontour(laksin,1,'abs','-bo'); hold off
 » legend(['resolution in beats=.25'; ...
 » 'resolution in beats=1.0']);

Figure 9. Melodic contour and notation of "Läksin minä kesäyönä".

One application of the melodic contour is finding out whether the sequence contains
repeated melodic phrases. This can be done using an autocorrelation technique
(Eerola et al., submitted). The autocorrelation function of a time series is obtained by
correlating the series with a delayed copy of itself, using delay values ranging from –L

0 2 4 6 8 10 12 14 16 18

60

62

64

66

68

70

72

74

76

Time (beats)

M
id

in
ot

e

resolution in beats = .25
resolution in beats = 1.0

■ CHAPTER 4 – EXAMPLES 22

■ MIDI Toolbox ■

to +L, where L denotes the total length of the time series. A time series is
autocorrelated if it is possible to predict its value at a given point of time by knowing
its value at other points of time. Positive autocorrelation means that points at a certain
distance away from each other have similar values (Box, Jenkins & Reinsel, 1994).

 » l = reftune('laksin');
 » c = melcontouracorr(l);
 » t = [-(length(c)-1)/2:1:(length(c)-1)/2]*.1;
 » plot(t,c,'k');md = round(max(onset(l))+ dur(l(end,:)));
 » axis([-md md -0.4 1]); xlabel('\bfLag (in beats)')
 » set(gca,'XTick',-md:2:md); ylabel('\bfCorr. coeff.')

Figure 10. A plot of autocorrelation across melodic contour of "Läksin minä kesäyönä".

Figure 10 shows the autocorrelation function of the contour of Läksin mina kesäyönä.
At the middle of the figure (at the peak, lag 0 beats) the autocorrelation function gives
the result of 1.0, perfect correlation, because at this point the melodic contour is
compared with itself. The autocorrelation function is always symmetric with respect
to the point corresponding to zero lag. Therefore, only the right halve needs to be
regarded to estimate the degree of self-similarity. The shaded area shows the self-
similarity of the melodic contour; only the positive correlations of the autocorrelation
function (half-wave rectification) are observed. This relevant, right portion of the
autocorrelation function may be plotted using the 'ac' parameter in melcontour
command:

 » plotmelcontour(l,0.5,'abs','b','ac');

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (in beats)

Co
rr

. c
oe

ff.

23 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Figure 11. Self-similarity of melodic contour of Läksin minä kesäyönä.

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

Lag (beats)

C
or

r.
co

ef
.

Autocorr. sampl. res. (beats)=0.5

■ CHAPTER 4 – EXAMPLES 24

■ MIDI Toolbox ■

Example 3: Key-Finding

The classic Krumhansl & Schmuckler key-finding algorithm (Krumhansl, 1990), is
based on key profiles obtained from empirical work by Krumhansl & Kessler (1982).
The key profiles were obtained in a series of experiments, where listeners heard a
context sequence, consisting of an incomplete major or minor scale or a chord
cadence, followed by each of the chromatic scale pitches in separate trials. (See
Example 9 for instructions on creating the probe-tone stimuli using the Toolbox).
Figure 12 shows the averaged data from all keys and contexts, called C major and C
minor key profiles.

Figure 12. Probe-tone ratings for the keys of C major and C minor (Krumhansl & Kessler,
1982).

In the K-S key-finding algorithm, the 24 individual key profiles, 12 major and 12
minor key profiles, are correlated with the pitch-class distribution of the piece
weighted according to their duration. This gives a measure of the strength of each key.
Let us take the C major Prelude in J. S. Bach's Wohltemperierte Klavier II (BWV
870). The first page of this Prelude is shown in Figure 13 .

We load this file into a variable called prelude and take only the first 10 measures
(first page in Figure 13) of it to find a likely key area:

 » prelude10=onsetwindow(prelude,0,40);
 » keyname(kkkey(prelude10))
 » ans = 'C'

The inner function in the second command line (kkkey) performs the K-S key-
finding algorithm and the outer function changes the numerical output of the inner
function to a letter denoting the key. Not surprisingly, the highest correlation of the
note distribution in the first 10 measures of the Prelude is obtained with the C major
key profile. A closer look at the other candidates the algorithm offers reveals the
strength of all keys:

 » keystrengths = kkcc(prelude10); % corr. to all keys
 » plotdist(keystrengths); % plot all corr. coefficients

Figure 15 displays the correlation coefficient to all 24 key profiles. According to the
figure, G major and a minor keys are also high candidates for the most likely key.
This is not surprising considering that these are dominant and parallel minor keys to C
major.

C C# D D# E F F# G G# A A# B
1

2

3

4

5

6

7

P
ro

be
-to

ne
 ra

tin
g

C major

C C# D D# E F F# G G# A A# B
1

2

3

4

5

6

7

P
ro

be
-to

ne
 ra

tin
g

C minor

25 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Figure 13. First page of Bach's C major Prelude from Wohltemperierte Klavier II (BWV 870).

C D E F# G# A# c d e f# g# a#
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Key

C
or

r.
co

ef
f.

■ CHAPTER 4 – EXAMPLES 26

■ MIDI Toolbox ■

Figure 14. Correlation coefficients of the pitch-class distribution in Bach's C-major prelude to
all 24 key profiles.

Another way of exploring key-finding is to look at how tonality changes over time. In
the technique, key-finding is performed within a small window that runs across the
length of the music. This operation uses the movewindow function. Below is an
example of finding the maximal key correlation using a 4-beat window that is moved
by 2 beats at a time.

 » prelude4=onsetwindow(prelude,0,16,'beat');
 » keys = movewindow(prelude4,4,2,'beat','maxkkcc');
 » label=keyname(movewindow(prelude4,4,2,'beat','kkkey'));
 » time=0:2:16; plot(time,keys,':ko','LineWidth',1.25);
 » axis([-0.2 16.2 .4 1])
 » for i=1:length(label)
 » text(time(i),keys(i)+.025,label(i),...
 » 'HorizontalAlignment','center','FontSize',12);
 » end
 » ylabel('\bfMax. key corr. coeff.');
 » xlabel('\bfTime (beats)')

Figure 15. Maximum key correlation coefficients across time in the beginning of the C-major
Prelude.

Figure 15 displays the key changes over time, showing the movement towards the F
major (meas. 4) and further to G major (meas. 6). Although the measure shows the
strength of the key correlation, it gives a rather simplistic view of the tonality as the
dispersion of the key center between the alternate local keys is not shown. A recent
dynamic model of tonality induction (Toiviainen & Krumhansl, 2003) calculates local
tonality based on key profiles. The results may be projected onto a self-organizing
map (SOM) trained with the 24 key profiles. In the following example, the function
calculates the key strengths and creates the projection. The second argument in the
syntax example defines the colorbar and the third the color.

 » keysom(prelude10,1); % create a color figure

0 2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

c

C
C F

e

e

a

d d

M
ax

. k
ey

 c
or

r.
co

ef
f.

Time (beats)

27 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Figure 16. Self-organizing map (SOM) of the tonality in Bach’s C-major Prelude.

The map underlying the tonal strengths in Figure 16 is toroid in shape, which means
that the opposite edges are attached to each other. The local tonality is the strongest in
the area between a minor and C major. This visualization of tonality can be used to
show the fluctuations of the key center and key strength over time. Below is an
example of this using a 4-beat window that steps 2 beats forward each time.

 » keysomanim(prelude4,4,2); % show animation in Matlab
 » keysomanim(prelude4,4,2,'beat','strip'); % show strips

Beat 2.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 4.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 6.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 8.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 10.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 12.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 14.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 16.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Figure 17. First four measures (two frames per measure) of the tonality animation in Bach's
Prelude.

Figure 17 displays the tonality of the first four measures of the Prelude. From the
separate figures one can see how the tonal center is first firmly in C major and then it
moves towards other regions, F, e, etc.

■ CHAPTER 4 – EXAMPLES 28

■ MIDI Toolbox ■

Figure 18. First four measures of the Bach's Prelude corresponding to the tonality animation
of Figure 17.

Another option in keysomanim function allows to save the animation as a Matlab
movie ('movie'). The saved movie can be played back by movie command or
written to a file using avifile command. When playing back the movie, be sure to
synchronize the animations using equivalent frame rate in order to retain the timing
information. For example, to create an animation using 5 frames per second (fps), the
following syntax may be used:

 » m=keysomanim(prelude4,2,.2,'sec','movie'); % 5 fps
 » movie(m,1,5); % last arg. = frames per second (fps)

Matlab movies use extensive amounts of memory. Therefore, with long musical
sequences it is recommended to use the 'frames' option and combine the frames
afterwards with a video editing software (such as Adobe Premiere). At the moment,
the sound cannot be easily included in the animation file without using an external
utility.

29 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Example 4: Meter-Finding

One way of visualizing the possible meter of a notematrix is to display its note onset
distribution in terms of the beat structure. This can be accomplished using the
onsetdist function. Let us plot the onset distribution of the Bach’s Prelude
assuming a four-beat measure:

 » onsetdist(prelude,4,'fig');

In this function, the second parameter refers to the assumed number of beats per
measure. The onsets are weighted by the durations of tones because the longer the
tone is, the more salient and prominent it is for the listener (Thompson, 1994).

Figure 19. Distribution of note onsets in Fugue.

Figure 19 shows that the Prelude is clear in terms of the note onset distribution across
a measure. Most onsets occur at the first beat of the measure, at the most important
location according to metrical hierarchy. This onset distribution is similar to that one
commonly found in music, for example, in the works of Bach, Mozart, Brahms, and
Shostakovich (Palmer & Krumhansl, 1990). Behavioral experiments conducted by
Palmer and Krumhansl (1990) have also demonstrated that a similar hierarchical grid
may reside in the minds of Western listeners.

Inferring the meter is a challenge that involves finding a regular beat structure from
the notematrix. One technique is to use the autocorrelation function and to seek peaks
from the onset structure corresponding to simple duple (2/4, 2/8, 2/2, 4/4) or simple
triple meter (3/4, 3/2). This technique resembles the method used by Brown (1993) to
estimate meter. Toiviainen and Eerola (2004) tested the effectiveness of the method in
classifying the meters into duple or triple using two large collections of melodies
(Essen collection and Finnish Folk Tunes, N = 12368). With only durational accents,
the correct classification rate was around 80%. This method is available as the meter
function in the Toolbox:

 » bestmeter = meter(laksin)
 bestmeter = 3

0 1 2 3 4
0

20

40

60

80

100

120

140

Location within measure (quarter notes)

To
ta

l d
ur

at
io

n
(q

ua
rte

r n
ot

es
)

Distribution of note onsets (quarter notes)

■ CHAPTER 4 – EXAMPLES 30

■ MIDI Toolbox ■

This indicates the most probable meter is simple triple (probably 3/4). When melodic
accent is incorporated into the inference of meter, the correct classification of meter is
higher (up to 93% of the Essen collection and 95% of Finnish folk songs were
correctly classified in Toiviainen & Eerola, 2004). This optimized function is
available in toolbox using the 'optimal' parameter in meter function, although the
scope of that function is limited to monophonic melodies.

Detecting compound meters (6/8, 9/8, 6/4) presents another challenge for meter-
finding that will not be covered here. A plot of autocorrelation results – obtained by
using onsetacorr function – provides a closer look of how the meter is inferred
(Figure 20). In the function, second parameter refers to divisions per quarter note.

 » onsetacorr(laksin,4,'fig');

Figure 20. Autocorrelation function of onset times in Läksin Minä Kesäyönä.

Figure 20 shows that the zero time lag receives perfect correlation as the onset
distribution is correlated with itself. Time lags at 1-8 quarter notes are stronger than
the time lags at other positions. Also, there is a difference between the correlations for
the time lag 2, 3 and 4. The lag of 3 beats (marked with A) is higher (although only
slightly) than the lags 2 and 4 beats and therefore it is plausible that the meter is
simple triple.

Even if we now know the likely meter we cannot be sure the first event or events in
the notematrix are not pick-up beats. In this dilemma, it is useful to look at the
metrical hierarchy, which stems from the work by Lerdahl and Jackendoff (1983).
They described the rhythmic structure of Western music as consisting of alteration of
weak and strong beats, which are organized in a hierarchical manner. The positions in
the highest level of this hierarchy correspond to the first beat of the measure and are
assigned highest values, the second highest level to the middle of the measure and so
on, depending on meter. It is possible to examine the metrical hierarchy of events in a
notematrix by making use of the meter-finding algorithm and finding the best fit
between cyclical permutations of the onset distribution and Lerdahl and Jackendoff
metrical hierarchies, shown below:

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time lag (quarter notes)

C
or

re
la

tio
n

Autocorrelation function of onset times

A
↓

B
↓

B
↓

31 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

 » plothierarchy(laksin,'sec');

The dots in Figure 20 represent the metrical hierarchy. High stacks of dots (connected
with a stem) correspond to events with high metrical hierarchy. In this melody, three
levels are in use. The meter-finding algorithm infers the meter of the tune correctly
(3/4), but the algorithm assumes that the first note is a pick-up note. This probably
happens because of the metrical stress caused by the long notes in the second beats in
measures three and six. A listener unfamiliar with the song could easily form this
interpretation of meter.

Figure 21. Notation of Läksin minä kesäyönä (upper panel) and the inferred metrical
hierarchy for the events (lower panel).

0 2 4 6 8 10

2

3

4

5

Time in seconds

M
et

ric
al

 h
ie

ra
rc

hy

■ CHAPTER 4 – EXAMPLES 32

■ MIDI Toolbox ■

Example 5: Melodic Segmentation

One of the fundamental processes in perceiving music is the segmentation of the
auditory stream into smaller units, melodic phrases, motifs and such issues. Various
computational approaches to segmentation have been taken. With symbolic
representations of music, we can distinguish rule-based and statistical (or memory-
based) approaches. An example of the first category is the algorithm by Tenney and
Polansky (1980), which finds the locations where the changes in “clangs” occur.
These clangs correspond to large pitch intervals and large inter-onset-intervals (IOIs).
This idea is partly based on Gestalt psychology. For example, this algorithm segments
Läksin in the following way:

 » segmentgestalt(laksin,'fig');

Figure 22. Segmented version of Läksin minä kesäyönä. The dotted line indicates clang
boundaries and the black line indicates the segment boundary, both the result of the Gestalt-
based algorithm (Tenney & Polansky, 1980).

Another segmentation technique uses the probabilities derived from the analysis of
melodies (e.g., Bod, 2002). In this technique, demonstrated in Figure 22, the
probabilities of phrase boundaries have been derived from pitch-class-, interval- and
duration distributions at the segment boundaries in the Essen folk song collection.

 » segmentprob(laksin,.6,'fig');

0 2 4 6 8 10 12 14 16
C4#

D4

D4#

E4

F4

F4#

G4

G4#

A4

A4#

B4

C5

C5#

Time in beats

Pi
tc

h

33 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Figure 23. Segmentation based on the probabilities of tone, interval, and duration distributions
at segment boundaries in the Essen collection. The middle panel shows the probabilities of
segment boundaries by the algorithm. The tune contains the two first phrases of Läksin minä
kesäyönä.

Both segmentation algorithms produce plausible divisions of the example tune
although the correct segmentation is more in line with Tenney & Polansky’s model.
Finally, a Local Boundary Detection Model by Cambouropoulos (1997) is a recent
variant of the rule-based model that offers effective segmentation of monophonic
input.
 » boundary(laksin,'fig');

Figure 24. Segmentation of Läksin minä kesäyönä based on Local Boundary Detection Model
(Camporopoulos, 1997)

0 2 4 6 8 10 12 14 16
C4#D4
D4#E4
F4 F4#
G4 G4#
A4 A4#
B4 C5
C5#

Time in beats

Pi
tc

h

0 2 4 6 8 10 12 14 16
0

0.5

1

0 2 4 6 8 10 12 14 16
C4#
D4
D4#
E4
F4
F4#
G4
G4#
A4
A4#
B4
C5
C5#

Time in beats

Pi
tc

h

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Bo
un

da
ry

 s
tre

ng
th

s

■ CHAPTER 4 – EXAMPLES 34

■ MIDI Toolbox ■

Example 6: Melodic Expectations

Recent work on melodic expectancy has shown how music draws on common
psychological principles of expectation that have been captured in Narmour’s (1990)
cognitively oriented music-theoretic model. The model draws on the Gestalt-based
principles of proximity, similarity, and good continuation and has been found to
predict listeners’ melodic expectancies fairly well (Krumhansl, 1995a, b). The model
operates by looking at implicative intervals and realized intervals. The former creates
implications for the melody's continuation and the next interval carries out its
implications (Figure 25).

Figure 25. An example implicative and realized interval.

The model contains five principles (Registral Direction, Intervallic Difference,
Registral Return, Proximity, and Closure) that are each characterized by a specific
rule describing the registral direction and the distance in pitch between successive
tones. The principle of Registral Return, for example, refers to cases in which the
second tone of the realized interval is within two semitones of the first tone of the
implicative interval. According to the theory, listeners expect skips to return to
proximate pitch. The combinations of implicative intervals and realized intervals that
satisfy this principle are shown by the shaded area at the Figure 26.

Figure 26. Demonstration of Registral Return in Narmour’s implication-realization model.
The vertical axis corresponds to the implicative interval ranging from 0 to 11 semitones. The
horizontal axis corresponds to the realized interval, ranging from 12 semitones in the opposite
direction of the implicative interval to 12 semitones in the same direction of the implicative
interval. The shaded grids indicate the combinations of implied and realized intervals that
fulfil the principle. A small X is displayed where the example fragment from Figure 25 would
be positioned along the grid. According to the principle of Registral Return, the example

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

9

10

11

Im
p

lic
at

iv
e

in
te

rv
al

Realized interval

X

35 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

fragment (containing intervals of 2 semitones + 2 semitones) would not be predictable
according to the algorithm as it lies outside the shaded area.

The implication-realization model has been quantified by Krumhansl (1995b), who
also added a new principle, Consonance, to the model. The Figure 27 displays the
quantification schemes of all six principles in Narmour’s model, available in the
Toolbox as narmour function.

Figure 27. Quantification of Narmour's Implication-realization model (Krumhansl,
1995b). The darker areas indicate better realization of implied intervals.
A cursory look at the shaded areas of Figure 27 indicates that proximate pitches
(Proximity), reversals of direction in large intervals (Registral Direction) and unisons,
perfect fourths, fifths and octaves (Consonance) are preferred as realized intervals by
Narmour’s model.

Other factors affect melodic expectations as well. The local key context is also a
strong influence on what listeners expect of melodic continuations. If the key of the
passage is known, tonal stability values (obtained from the experiment by Krumhansl
& Kessler, 1982, shown in Figure 12) can be used to evaluate the degree of fitness of
individual tones to the local key context. tonality function in the MIDI toolbox can
be used to assign these values to note events assuming the key is in C major or C
minor. In addition, differences in tonal strengths of the individual pitch-classes form
asymmetrical relationships between the adjacent pitches. Tonally unstable tones tend
to be attracted to tonally stable tones (e.g., in C major, B is pulled towards the tonic C,
and G to either A or G). This melodic attraction (Lerdahl, 1996) provides an account

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9

10
11

Im
p

li
ca

ti
ve

 in
te

rv
al

Closure

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9

10
11

Im
p

li
ca

ti
ve

 in
te

rv
al

Registral Direction

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9

10
11

Im
p

li
ca

ti
ve

 in
te

rv
al

Registral Return

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9

10
11

Im
p

li
ca

ti
ve

 in
te

rv
al

Proximity

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9

10
11

Im
p

li
ca

ti
ve

 in
te

rv
al

Realized interval

Consonance

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9

10
11

Im
p

li
ca

ti
ve

 in
te

rv
al

Realized interval

Intervallic Difference

■ CHAPTER 4 – EXAMPLES 36

■ MIDI Toolbox ■

Mean

Tonality Proximity. Reg. Ret. Cons. Tessitura Mobility
0

0.5

1

1

Model predictions

Tonality Proximity. Reg. Ret. Cons. Tessitura Mobility
0

0.5

1

2

Tonality Proximity. Reg. Ret. Cons. Tessitura Mobility
0

0.5

1

3

Tonality Proximity. Reg. Ret. Cons. Tessitura Mobility
0

0.5

1

4

for the attraction across the pitches in tonal pitch space. This model can be evoked by
the melattraction function. Finally, recent revisions of Narmour’s model by von
Hippel (2000) offer a solution to melodic expectancy that is connected to the
restrictions of melodic range, which have probably originated from the limitations of
vocal range. These reformulations are called tessitura and mobility (and these are
available in the Toolbox as functions tessitura and mobility). The former
predicts that forth-coming tones will be close to median pitch height. The latter uses
autocorrelation between successive pitch heights to evaluate whether the tone is
predictable in relation to the previous intervals and the mean pitch.

Next, we can explore how suitable three alternate continuations are to our example
tune Läksin using the above-mentioned principles of melodic expectancy.

Figure 28. Fitness of four melodic continuations to a segment of the Läksin tune according to
six different predictions.

In Figure 28 the Läksin tune is interrupted at the middle of a phrase and three
alternative continuations in addition to the actual continuation (G) are proposed. The
model predictions for each of these tones are shown below the notation. The actual
tone receives the highest mean score and the chromatic tones (E and G) receive the
lowest mean scores. The individual predictions of the different models illuminate why
these candidates receive different fitness rating according to the models. The tone G,
the highest candidate, is appropriate to continue the sequence because of its close
proximity to the previous and median tone of the sequence, high degree of tonal
stability of the mediant tone (G) in e-minor and because its movement direction can
be predicted from the previous pitch heights. The lowest candidate G is also close in
pitch proximity but it is not tonally stable and it also forms dissonant interval with the
previous tone. Note that not all principles are commonly needed to estimate the fitness
of a given tone to a sequence and the exact weights of the principles vary across
music styles. Furthermore, this method does not explicitly account for longer pitch
patterns although it is evident that in the example melody, listeners have already come
across similar melodic phrase in the beginning of the melody. However, these issues
can be examined using contour-related (Example 2) and continuous models (Example
7).

Continuations Context

37 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Example 7: Melodic Complexity

Occasionally, it is interesting to know how complicated, difficult or ‘original’ a
melody is. For example, Dean Keith Simonton (1984, 1994) analyzed a large number
of classical themes and noticed that the originality of the themes is connected with
their popularity. This relationship is in the form of inverted-U function where the
most popular themes are of medium originality. As a result, the most simple themes
are not popular (they may be considered ‘banal’) and neither are the most complex
ones. There are also other uses for a melodic complexity measure such as using it as
an aid in classification of melodic material (Toiviainen & Eerola, 2001). Simonton’s
model of melodic originality is based on tone-transition probabilities. The output of
this model (compltrans) produces an inverse of the averaged probability, scaled
between 0 and 10 where higher value indicates higher melodic originality.

Another way of assessing melodic complexity is to focus on tonal and accent
coherence, and to the amount of pitch skips and contour self-similarity the melody
exhibits. This model has been coined expectancy-based model (Eerola & North, 2000)
of melodic complexity because the components of the model are derived from
melodic expectancy theories (available as complebm function). An alternative
measure of melodic complexity is anchored in continuous measurement of note event
distribution (pitch-class, interval) entropy (use movewindow and entropy and
various distribution functions). This measure creates melodic predictability values for
each point in the melody (hence the term continuous). These values have been found
to correspond to the predictability ratings given by listeners in experiments (Eerola et
al., 2002). This measure offers a possibility to observe the moment-by-moment
fluctuations in melodic predictability.

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

P
re

di
ct

ab
ili

ty

Bar numbers

P-C entropy

Figure 29. Predictability of Bach’s Sarabande (first 27 measures).

The Figure 29 displays how the predictability fluctuates over time. In the beginning,
predictability increases as the opening melodic motifs are repeated (see Figure 4 for
notation). At measure 20, the Sarabande takes a new turn, modulates and contains
large pitch skips all that lead to lower predictability values.

■ CHAPTER 4 – EXAMPLES 38

■ MIDI Toolbox ■

Example 8: Analyzing MIDI Collections

In this example, we have a sample of 50 Finnish Folk songs from the Suomen Kansan
Sävelmät –collection (Eerola & Toiviainen, 2004). First, we load all songs saved in a
Matlab cell matrix (see the first line of commands below and the notes about the
collection format in the Chapter 3). Then we can investigate any property of the
collection with a single command (analyzecoll). For example, the following
commands can be used to calculate the pitch-class profile of all songs in the collection
(all songs have been transposed into C major/c minor).

 » load finfolktunes.mat % we get a variable, nm
 » pcd = analyzecoll(nm,'pcdist1'); % 50 x 12 matrix
 » meanpcd = mean(pcd,1); % collapsed into 12-comp. vector
 » plotdist(meanpcd);

C C# D D# E F F# G G# A A# B
0

0.05

0.1

0.15

0.2

0.25

Pitch-class

P
ro

po
rti

on
 (%

)

Figure 30. Key profile of the 50 Finnish folk songs (Eerola & Toiviainen, 2004).

In order to compare the resulting distribution to a suitable existing reference
distribution, one can use the refstat function in the Toolbox. Various reference
statistics in the refstat function can be listed using the help command. To obtain
the mean pitch-class distributions in Essen Folk Song Collection and in Schubert
songs, type:

 » essen_pc = refstat('pcdist1essen');
 » schubert_pc = refstat('pcdist1schubert');

The Essen tone profile has been obtained from the digital folk song collection, edited
by Helmut Schaffrath (1995), from which the songs have been converted into **kern
representation (Huron, 1999) and subsequently to MIDI and then analyzed using the
MIDI Toolbox. The Schubert profile is based on the work by Knopoff and Hutchinson
(1983) who tallied the frequency of intervals in Schubert songs in major keys. Now
we can plot the pitch-class distributions of these three corpora.

39 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

C C# D D# E F F# G G# A A# B
0

0.05

0.1

0.15

0.2

0.25

0.3

P
ro

po
rti

on

Pitch-class

Finnish Collection
Essen Collection
Classical (major)

Figure 31. Pitch-class profiles of Finnish (Eerola & Toiviainen, 2004) and European folk
songs (Essen collection, Schaffrath, 1995) and Schubert songs (Knopoff & Hutchinson,
1983).

The note distributions of the three collections seem to be highly similar. The profile
obtained from the Finnish folk songs displays some differences, mainly concerning
higher proportion of subdominant (F) and lowered leading note (B) than the other
collections, which may reflect the modal character of some tunes in the Finnish
corpus. In general, however, the pitch-class distributions may not differ much in
various styles of Western music. For example, bebop jazz solos and classical music
correlate highly (Järvinen, 1995) as well as Finnish spiritual folk hymns and North
Sami yoiks (Krumhansl, 2000). In addition, the correlation between the Krumhansl &
Kessler key profiles (shown in Figure 12 and also obtainable by refstat function)
and probabilities of various pitches within tonal music is high (around +.88). For this
reason, the pitch-class profiles do not discriminate the musical styles sufficiently.

If we take a look at another distribution, we see how the visual comparison of the
profiles grows even more difficult. Below are the note transitions profiles from Essen
folk song collection and classical music, obtained by Youngblood (1958). These
distributions can be obtained by refstat function in the Toolbox using
'pcdist2essen' and'pcdist2classical2' switches, respectively).

■ CHAPTER 4 – EXAMPLES 40

■ MIDI Toolbox ■

Figure 32. Note transitions in classical music (Youngblood, 1958) and Essen collection
(Schaffrath, 1995).

In Figure 32, note repetitions have been omitted from the profile describing note
transitions in the Essen collection, as Youngblood (1958) did not originally tally
them. Thus, the diagonals of both profiles are empty. The common transitions, C-D,
D-C, F-E, G-C, G-F, E-C, C-B, seem to occur with similar frequency in the two
collections, but it is difficult to say how different the profiles actually are. A distance
metric can be used to calculate the degree of similarity of the profiles. Several
distance metrics can be used: Pearson’s correlation coefficient is commonly
employed, although it is problematic, as it does not consider absolute magnitudes and
note events in music are not normally distributed in the statistical sense (Toiviainen,
1996).

A more consistent (dis)similarity measure is the Euclidean distance between the two
vectors representing the distributions. Chi-square measure is another method of
comparison. In addition, city block distance or cosine direction measures may be used
to calculate the distances between the distributions (Everitt & Rabe-Hesketh, 1997).
Some of these distance measures are considered in more detail in Example 8 (Chapter
5).

C C#D
D#E

F F#G
G#A

A#B

CC#DD#EFF#GG#AA#B
0

0.02

0.04

0.06

2nd tone

Note transitions in Classical music

1st tone
C C#D

D#E
F F#G

G#A
A#B

CC#DD#EFF#GG#AA#B
0

0.02

0.04

0.06

2nd tone

Note transitions in Essen Folk Collection

1st tone

41 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Example 9: Melodic similarity

Some of the distance measures outlined in the previous example can be used to
calculate the similarity between motifs, phrases or other melodic segments. In the
toolbox, this is handled by the meldistance function, which calculates the distance
(or similarity) between two notematrices using a user-defined representation (various
distributions or melodic contour) and distance measure. In this function, similarity can
be scaled to range between 0 and 1, the latter indicating perfect similarity although
this value does not indicate absolute similarity but is meaningful when compared to
other melodic pair ratings (see demos for a longer example). For example, the
similarity between the four phrases of Läksin tune, using contour representation (20
samples) and taxi cab distance (scaled between 0 and 1), is calculated as follows:

 » laksin=reftune('laksin_complete');
 » phrase{1} = onsetwindow(laksin,0,8);
 » phrase{2} = trim(onsetwindow(laksin,9,17));
 » phrase{3} = trim(onsetwindow(laksin,18,28));
 » phrase{4} = trim(onsetwindow(laksin,29,37));
 »
 » for i=1:4
 » for j=1:4
 » dst(i,j) = meldistance(phrase{i},phrase{j},...
 » 'contour','taxi',20,1);
 » end
 » end
 » dst = tril(dst,-1)

Figure 33. Läksin minä kesäyönä. The phrases are marked with capital letters.

Table 1. Melodic similarity using different representations (rescaled between 0-1).

 contour durdist1
Phrase A B C Phrase A B C

A A
B .90 B .63
C .80 .76 C .63 .95
D .90 1.00 .76 D .54 .91 .89

In the code, the phrases are first extracted and inserted into a single cell structure
using curly brackets. This allows the comparison to be performed for a single variable
(phrase). Next, a simple loop is used to compare all phrases with each other. Finally,

■ CHAPTER 4 – EXAMPLES 42

■ MIDI Toolbox ■

the lower part of the resulting 4 x 4 matrix are displayed using tril function, shown
in Table 1. The table also displays the similarities using another representation,
namely distribution of durations ('durdist1' parameter in the meldistance
function). Figure 33 illustrates the phrases involved in the comparison.

For the contour representation, the phrases B and D are identical (similarity 1.00) and
the phrase C differs most from the other phrases. This seems intuitively reasonable
although the exact numbers should be viewed with caution. However, similarity based
on the distribution of note durations indicates greatest similarity between the phrases
B and C (.95) and lowest similarity between A and D (.54). The results of this simple
indicator of rhythmic similarity are in contrast with the contour representation. These
results are, again, readily apparent from the notated score. Another common
comparison strategy between melodic segments involves dynamic programming,
which is not covered in this tutorial (see e.g., Stammen, & Pennycook, 1993; Hu,
Dannenberg & Lewis, 2002).

43 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Example 10: Creating Sequences

The Toolbox may be used to create melodies and chord sequences that can, in turn, be
saved as MIDI or synthesized audio files. For example, to recreate the chord context
version of the well-known probe-tone sequences (Krumhansl & Kessler, 1982), use
createnmat function.

 » IV = createnmat([65 69 72],0.5);
 » IV = setvalues(IV,'onset',0);
 » V = shift(IV,'pitch',2);
 » V = shift(V,'onset',0.75,'sec');
 » I = shift(V,'pitch',-7);
 » I = shift(I,'onset',0.75,'sec');
 » probe = createnmat([61],0.5);
 » probe = shift(probe,'onset', 3, 'sec');
 » sequence = [IV; V; I; probe];

The first line creates a IV chord in C major (F A C) that lasts for 0.5 seconds and
starts at 0 seconds (second line). The third line transposes the first chord (IV) major
second up and shifts the onset time by 0.75 so that this chord (V) follows the first
chord after 0.25 second pause. The fifth and sixth line repeats this operation for the
third chord (I). Lines seven and eight create the probe-tone (C) and the final line
combines the individual chords and the probe-tone into a sequence.

To synthesize the sequence using Shepard tones, which de-emphasize pitch height
and underline pitch-class, use the nmat2snd function. The following creates the
probe sequence as a CD-quality audio file using the Shepard tones:

 » signal = nmat2snd(sequence,'shepard',44100); %

 » plot(signal) % create a plot of the signal
 » l=length(signal);
 » ylabel('Amplitude'); xlabel('Time (in s)') % labels
 » set(gca,'XTick',(0:22050:l))
 » set(gca,'XTickLabel',(0:22050:l)/44100) % in seconds

Figure 34. The probe sequence as an audio signal (mono).

In most circumstances, the sampling rate (the second parameter, 44100 samples per
second in the example above) can be left out. In that case, considerably lower but
sufficient sampling rate (8192 Hz) is used. To play and write the signal to your hard-
drive, use Matlab’s own functions soundsc and wavwrite:

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

A
m

p
lit

u
d

e

Time (in s)

■ CHAPTER 4 – EXAMPLES 44

■ MIDI Toolbox ■

 » soundsc(signal,44100); % play the synthesized sequence
 » wavwrite(signal,44100,'probe.wav'); % write audio file

Note that in order to create a stereo audio file the signal must be in two channels,
easily created by duplicating the signal to two channels:

 » stereo = [signal; signal]';

To demonstrate the so-called Shepard illusion (Shepard, 1964), where a scale
consisting of semitones is played over four octaves using Shepard tones, type:

 » playsound(createnmat([48:96],.5),'shepard');

Shepard tones are ambiguous in terms of their pitch height although their pitch-class
or pitch chroma can be discerned. When 12 chromatic tones are played in ascending
order over and over again, an illusion of a continuous ascending pitch sequence will
form although the point at which the sequence starts over is not perceived.

Hearing pairs of tones in succession will form a perception of an ascending or a
descending interval. When tritone intervals (e.g., C-F) are played using Shepard
tones, the direction of the interval is ambiguous. Sometimes listeners hear certain
tritones as ascending and sometimes descending. To listen to the tritone paradox (see
Deutsch, 1991; Repp, 1994), type:

 » playsound(reftune('tritone'),'shepard');

Perception of interleaved melodies provides another example of melody creation. In
interleaved melodies, successive notes of the two different melodies are interleaved so
that the first note of the first melody is followed by the first note of second melody,
followed by the second note of the first melody followed by the second note of the
second melody and so on. Using these kinds of melodies in perceptual experiments,
Dowling (1973; and later Hartmann & Johnson, 1991) has observed that listeners’
ability to recognize the melodies is highly sensitive to the pitch overlap of the two
melodies. When the melodies are transposed so that their mean pitches are different,
recognition scores increase. Create these melodies using reftune and trans
functions and test at which pitch separation level you spot the titles of the songs.

 » d1 = reftune('dowling1',0.4);
 » d2 = reftune('dowling2',0.4);

 » d2=shift(d2,'onset',+.2,'sec'); % delay (0.2 sec)
 » d2=shift(d2,'dur',-.2,'sec'); % shorten the notes
 » d1=shift(d1,'dur',-.2,'sec'); % shorten the notes

 » playsound([d1; d2]); pause
 » playsound([d1;shift(d2,'pitch',-3)]); pause
 » playsound([d1;shift(d2,'pitch',6)]); pause
 » playsound([d1;shift(d2,'pitch',-9)]);

45 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

References

Bharucha, J. J. (1984). Anchoring effects in music: The resolution of dissonance. Cognitive
Psychology, 16, 485-518.

Bod, R. (2002). Memory-based models of melodic analysis: challenging the gestalt principles.
Journal of New Music Research, 31, 27-37.

Box, G. E. P., Jenkins, G., & Reinsel, G. C. (1994). Time series analysis: Forecasting and
control. Englewood Cliffs, NJ: Prentice Hall.

Brown, J. C. (1993). Determination of meter of musical scores by autocorrelation. Journal of
Acoustical Society of America, 94(4), 1953-1957.

Cambouropoulos, E. (1997). Musical rhythm: A formal model for determining local
boundaries, accents and metre in a melodic surface. In M. Leman (Ed.), Music,
Gestalt, and Computing: Studies in Cognitive and Systematic Musicology (pp. 277-
293). Berlin: Springer Verlag.

Deutsch, D. (1991). The tritone paradox: An influence of language on music perception.
Music Perception, 8, 335-347.

Dowling, W. J. (1973). The perception of interleaved melodies, Cognitive Psychology,5, 322-
337.

Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for
melodies. Psychological Review, 85(4), 341-354.

Dowling, W. J., & Fujitani, D. S. (1971). Contour, interval, and pitch recognition in memory
for melodies. Journal of the Acoustical Society of America, 49, 524-531.

Dowling, W. J. & Harwood, D. L. (1986). Music cognition. Orlando: Academic Press.
Eerola, T., Himberg, T., Toiviainen, P., & Louhivuori, J. (submitted). Perceived complexity

of Western and African folk melodies by Western and African listeners.
Eerola, T., & North, A. C. (2000). Expectancy-based model of melodic complexity. In

Woods, C., Luck, G.B., Brochard, R., O'Neill, S. A., and Sloboda, J. A. (Eds.)
Proceedings of the Sixth International Conference on Music Perception and
Cognition. Keele, Staffordshire, UK: Department of Psychology. CD-ROM.

Eerola, T., Toiviainen, P., & Krumhansl, C. L. (2002). Real-time prediction of melodies:
Continuous predictability judgments and dynamic models. In C. Stevens, D.
Burnham, G. McPherson, E. Schubert, J. Renwick (Eds.) Proceedings of the 7th
International Conference on Music Perception and Cognition, Sydney, 2002.
Adelaide: Causal Productions.

Eerola, T., & Toiviainen, P. (2004). Suomen kansan esävelmät: Digital archive of Finnish
Folk songs [computer database]. Jyväskylä: University of Jyväskylä. URL:
http://www.jyu.fi/musica/sks/

Essens, P. (1995). Structuring temporal sequences: Comparison of models and factors of
complexity. Perception & Psychophysics, 57, 519-532.

Everitt, B. S., & Rabe-Hesketh, S. (1997). The analysis of proximity data. London: Arnold.
Hartmann, W. M., & Johnson, D. (1991). Stream segregation and peripheral channeling.

Music Perception, 9(2), 155-183.
Hewlett, W. B. & Selfridge-Field, E. (Eds.) (1993/1994). Computing in Musicology: An

International Directory of Applications, Vols 9. Menlo Park, California: Center for
Computer Assisted Research in the Humanities.

von Hippel, P. (2000). Redefining pitch proximity: Tessitura and mobility as constraints on
melodic interval size. Music Perception, 17 (3), 315-327.

Hu, N., Dannenberg, R. B., & Lewis, A. L. (2002). A probabilistic model of melodic
similarity. Proceedings of the 2002 International Computer Music Conference. San
Francisco: International Computer Music Association, pp. 509-15.

Huron, D. (1996). The melodic arch in Western folksongs. Computing in Musicology, 10, 3-
23.

Huron, D. (1999). Music research using humdrum: A user’s guide. Stanford, CA: Center for
Computer Assisted Research in the Humanities.

http://www.jyu.fi/musica/sks/

■ CHAPTER 4 – EXAMPLES 46

■ MIDI Toolbox ■

Huron, D., & Royal, M. (1996). What is melodic accent? Converging evidence from musical
practice. Music Perception, 13, 489-516.

Järvinen, T. (1995). Tonal hierarchies in jazz improvisation. Music Perception, 12(4), 415-
437.

Kim, Y. E., Chai, W., Garcia, R., & Vercoe, B. (2000). Analysis of a contour-based
representation for melody. In International Symposium on Music Information
Retrieval, Plymouth, MA: Indiana University.

Knopoff, L. & Hutchinson, W. (1983). Entropy as a measure of style: The influence of sample
length. Journal of Music Theory, 27, 75-97.

Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal
organization in a spatial representation of musical keys. Psychological Review, 89,
334-368.

Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford
University Press.

Krumhansl, C. L. (1995a). Effects of musical context on similarity and expectancy.
Systematische musikwissenschaft, 3, 211-250.

Krumhansl, C. L. (1995b). Music psychology and music theory: Problems and prospects.
Music Theory Spectrum, 17, 53-90.

Leman, M., Lesaffre, M., & Tanghe, K. (2000). The IPEM toolbox manual. University of
Ghent, IPEM-Dept. of Musicology: IPEM.

Lemström, K., Wiggins, G. A., & Meredith, D. (2001). A three-layer approach for music
retrieval in large databases. In The Second Annual Symposium on Music Information
Retrieval (pp. 13-14), Bloomington: Indiana University.

Lerdahl, F. (1996). Calculating tonal tension. Music Perception, 13(3), 319-363.
Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge: MIT

Press.
Palmer, C., & Krumhansl, C. L. (1987). Independent temporal and pitch structures in

determination of musical phrases. Journal of Experimental Psychology: Human
Perception and Performance, 13, 116-126.

Repp, B. (1994). The tritone paradox and the pitch range of the speaking voice: A dubious
connection. Music Perception, 12, 227-255.

Schellenberg, E. G. (1996). Expectancy in melody: Tests of the implication-realization model.
Cognition, 58, 75-125.

Schellenberg, E. G. (1997). Simplifying the implication-realization model of melodic
expectancy. Music Perception, 14, 295-318.

Shepard, R. N. (1964). Circularity in judgements of relative pitch. Journal of the Acoustical
Society of America, 36, 2346-2353.

Simonton, D. K. (1984). Melodic structure and note transition probabilities: A content
analysis of 15,618 classical themes. Psychology of Music, 12, 3-16.

Simonton, D. K. (1994). Computer content analysis of melodic structure: Classical composers
and their compositions. Psychology of Music, 22, 31-43.

Schaffrath, H. (1995). The Essen Folksong Collection in Kern Format. [computer database]
D. Huron (Ed.). Menlo Park, CA: Center for Computer Assisted Research in the
Humanities.

Stammen, D., & Pennycook, B. (1993). Real-time recognition of melodic fragments using the
dynamic timewarp algorithm. Proceedings of the 1993 International Computer Music
Conference. San Francisco: International Computer Music Association, pp. 232-235.

Tenney, J., & Polansky, L. (1980). Temporal gestalt perception in music. Journal of Music
Theory, 24(2), 205-41.

Thompson, W. F. (1994). Sensitivity to combinations of musical parameters: Pitch with
duration, and pitch pattern with durational pattern. Perception & Psychophysics, 56,
363-374.

Toiviainen, P. (1996). Modelling musical cognition with artificial neural networks.
Unpublished PhD dissertation, Jyväskylä Studies in the Arts 51. Jyväskylä, Finland:
University of Jyväskylä.

47 CHAPTER 4 – EXAMPLES ■

■ MIDI Toolbox ■

Toiviainen, P., & Krumhansl, C. L. (2003). Measuring and modeling real-time responses to
music: the dynamics of tonality induction. Perception, 32(6), 741-766.

Toiviainen, P., & Eerola, T. (2001). A method for comparative analysis of folk music based
on musical feature extraction and neural networks. Proceedings of the VII
International Symposium on Systematic and Comparative Musicology and III
International Conference on Cognitive Musicology, 2001, University of Jyväskylä,
Finland.

Toiviainen, P., & Eerola, T. (2004). The role of accent periodicities in meter induction: A
classification study. In x (Ed.), Proceedings of the ICMPC8 (p. xxx-xxx). xxx:xxx.

Vos, P. G., & Troost, J. M. (1989). Ascending and descending melodic intervals: statistical
findings and their perceptual relevance. Music Perception, 6(4), 383-396.

Youngblood, J.E. (1958). Style as information. Journal of Music Theory, 2, 24-35.

■ CHAPTER 5 – FUNCTION REFERENCE 48

■ MIDI Toolbox ■

CHAPTER 5 – FUNCTION REFERENCE
This chapter contains detailed descriptions of all MIDI Toolbox functions. It begins
with a list of functions grouped by subject area and continues with the reference
entries in alphabetical order. Most of the subject areas are self-explanatory (plotting
functions, segmentation functions) but some may need further explanation.
CONVERSION FUNCTIONS convert from MIDI files to Matlab or vice versa or
perform some other type of conversion. META FUNCTIONS is a special category,
in which a function uses another function to perform an operation to a collection.
FILTER FUNCTIONS mostly return a new NMAT that has been modified
according to the particular filter used. STATISTICAL FUNCTIONS refer to various
event distributions of the notematrix (proportion of pitch-classes in a notematrix, for
example).

The output format of the functions is indicated on the rightmost column. The
following abbreviations are used:

Abbr. Explanation
s Scalar
r Row vector
c Column vector (scalar value for each note)
nm Notematrix
cm Cell matrix
m Matrix
o Other (e.g., output can be a Figure, sound or a text string)
- None

49 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

CONVERSION FUNCTIONS
Function Purpose Output
dir2coll Converts a directory of MIDI files to cellmatrix structure cm
hz2midi Convert frequencies to MIDI numbers c
keyname Convert keys (24) to key names (text) o
midi2hz Convert MIDI note numbers to frequencies (Herz) c
notename Convert MIDI numbers to American pitch spelling (text) o
readmidi Reads a MIDI file to a notematrix nm
writemidi Writes a MIDI file from a notematrix (file)

GENERATION FUNCTIONS
Function Purpose Output
createnmat Create a notematrix from the input arguments nm
setmidiplayer Define external MIDI player -
nmat2snd Synthesize NMAT using simple synthesis o
playmidi Plays NMAT using external MIDI player o
playsound Play and synthesize NMAT using simple synthesis o
reftune Obtain a 'reference' or example tune nm

FILTER FUNCTIONS
Function Purpose Output
dropmidich Note events that are not on channel CH nm
dropshortnotes Returns note events that are shorter than THRESHOLD nm
elim Eliminate short MIDI tracks nm
extreme Returns extreme pitches (high/low) of a polyphonic NMAT nm
getmidich Note events on channel CH nm
ismonophonic Returns 1 if the sequence is monophonic s
mchannels Midi channels that are used in NMAT r
movewindow Runs a selected function within a defined time window c
onsetwindow Events with mintime <= onsettime <= maxtime nm
perchannel Create output for each available channel o
quantize Quantize note onsets and durations of NMAT nm
scale Scales note data in given dimension (time, onsets, or duration) nm
setvalues Sets the chosen notematrix value for every event nm
shift Shifts note data in given dimension (onset, duration, or pitch) nm
transpose2c Transposes NMAT to C major/C minor nm
trim Removal of leading silence (trim) nm

■ CHAPTER 5 – FUNCTION REFERENCE 50

■ MIDI Toolbox ■

META FUNCTIONS
Function Purpose Output
analyzecoll Analyzes all NMAT in the COLLECTION o
analyzedir Analyzes all MIDI files in the directory -(file)
filtercoll Filter COLLECTION according to filter function cm

PLOTTING FUNCTIONS
Function Purpose Output
pianoroll Plots the NMAT as a "pianoroll" notation o
plotdist Plots pitch-class-, interval- or duration-distributions or

i i
o

plothierarchy Plots the metrical hierarchy of NMAT o
plotmelcontour Plots the contour of NMAT using STEP resolution o

STATISTICAL FUNCTIONS
Function Purpose Output
durdist1 Distribution of note durations r
durdist2 Duration transitions (duration pairs) m
entropy Entropy of a distribution s
ivdirdist1 Distribution of interval directions r
ivdist1 Distribution of intervals r
ivdist2 Interval transitions (interval pairs) m
ivsizedist1 Distribution of interval sizes r
nnotes Number of notes in NMAT s
pcdist1 Distribution of pitch-classes r
pcdist2 Pitch-class transitions (dyads) m
refstat Reference statistics (key profiles, Essen collection, etc.) r/m

KEY-FINDING FUNCTIONS
Function Purpose Output
keymode Estimates the keymode (1=major, 2=minor) based on KK key s
keysom Projection of pitch class distribution on a self-organizing map

(Toiviainen & Krumhansl, 2003)
-

keysomanim Animation using the KEYSOM function -/m
kkcc Correlation of the pitch class distribution to K & K profiles r
kkkey Returns the key of NMAT according to the Krumhansl-Kessler

algorithm
s

maxkkcc Maximal correlation of the PC distr. with 24 K & K profiles s
tonality Krumhansl & Kessler key profiles values (major/minor) c

51 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

CONTOUR FUNCTIONS
Function Purpose Output
melcontour Contour vector r
combcontour Builds the Quinn (1999) representation of melodic contour m

SEGMENTATION FUNCTIONS
Function Purpose Output
segmentgestalt Segmentation algorithm by Tenney & Polansky (1980) c
segmentprob Probabilistic estimation of segment boundaries based on the

Essen collection
c

boundary Local Boundary Detection Model by Cambouropoulos (1997) c

MELODIC FUNCTIONS
Function Purpose Output
ambitus Melodic range in semitones s
complebm Expectancy-based model of melodic complexity (Eerola &

North, 2000)
s

compltrans Melodic originality measure (Simonton, 1984) s
gradus Degree of melodiousness (Euler, 1739) s
melaccent Melodic accent (Thomassen, 1982) c
melattraction Melodic attraction (Lerdahl, 1996) c
meteraccent Measure of phenomenal accent synchrony (Eerola, 2003) c
mobility Melodic motion as a mobility (Hippel, 2000) c
narmour Implication-realization principles by Narmour (1990) c
tessitura Melodic tessitura based on deviation from median pitch height

(Hippel, 2000)
c

meldistance Measurement of distance between two NMATs s

■ CHAPTER 5 – FUNCTION REFERENCE 52

■ MIDI Toolbox ■

METER-RELATED FUNCTIONS
Function Purpose Output
concur Calculates the proportion of concurrent onsets in NMAT s
duraccent Returns duration accent of the events (Parncutt, 1994) c
gettempo Get tempo (in BPM) s
meter Autocorrelation-based estimate of meter (Toiviainen &

Eerola, 2004)
s

metrichierarchy Metrical hierarchy (Lerdahl & Jackendoff, 1983) c
notedensity Notes per beat or second s
nPVI Measure of durational variability of events (Grabe & Low,

2002)
s

onsetacorr Autocorrelation function of onset times r
onsetdist Distribution of onset times within a measure r
settempo Set tempo (in BPM) -

The following private functions reside in private directory under the MIDI Toolbox.
They are used by other functions and are not designed to be run individually.

PRIVATE FUNCTIONS
Function Purpose Output
distance Distance between two vectors under a given metric s
dursec Note durations in seconds (for compatibility) c
exptimewindow Exponential time windowing nm
ofacorr Autocorrelation of an onset function r
onsetfunc Sum of delta functions at onset times m
onsetmodmeter Onset times in relation to meter c
onsetsec Note onsets in seconds (for compatibility) c
xcorr Cross-correlation function estimates r

DEMOS
Function Purpose Output
mididemo Run through 8 MIDI Toolbox demos m
mdemo1 ... 8 Eight demo files m

53 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

ambitus
Function synopsis

Melodic range in semitones
Function syntax

function a = ambitus(nmat)
Function comments
Returns the melodic rage (ambitus) in semitones of NMAT

Input argument:
 NMAT = notematrix
Output:
 A = melodic range in semitones
Example:
 y = ambitus(nmat);

analyzecoll
Function synopsis

Analysis of collection using a specified function
Function syntax

function data = analyzecoll(coll, functionname, <other
arguments>)

Function comments
ANALYZECOLL works only with functions that take the notematrix as
 input argument and works only with functions returning either scalar
 or row vector.

Input arguments:
 COLL = name of the collection
 FUNNAME = name of the function
 <OTHER ARGUMENTS> possible other arguments to be passed to function FUNNAME
Output:
 DATA = scalar or row vector containing the output of function FUNNAME
 with each notematrix of the collection used as input argument
Example:
 keys = analyzecoll(collection, 'kkkey');

See also
analyzedir, filtercoll

analyzedir
Function synopsis

Analysis of MIDI files in a directory

■ CHAPTER 5 – FUNCTION REFERENCE 54

■ MIDI Toolbox ■

Function syntax
analyzedir(ofname,varargin)

Function comments
Analyzes all the midi files in the current directory using the functions whose names are given as input
arguments
and writes the result to file OFNAME.

Input arguments:
 OFNAME = output filename (string)
 VARARGIN = name(s) of the function(s) (strings)
Output:
 file OFNAME and diagnostic index of processed files
Remarks:
 This function works only with functions that take the notematrix as input argument and
return only one output argument. Also the midi files must have the postfix '.mid'. To create the output
file outside of current directory, the full path name has to be included in the first argument.
Example:
 analyzedir('myOutputFile', 'pcdist1', 'ivdist1', 'durdist1');

See also
analyzecoll, filtercoll

boundary
Function synopsis

Local Boundary Detection Model by Cambouropoulos (1997)
Function syntax

function b = boundary(nmat, <fig>)
Function comments
 Returns the boundary strength profile of NMAT
 according to the Local Boundary Detection Model
 by Cambouropoulos (1997)

 Input argument:
 NMAT = notematrix

 Output:
 B = strength of boundary following each note
 FIGURE (optional) = if any value is given, creates a graphical output
 Remarks:
 Cambouropoulos, E. (1997). Musical Rhythm: Inferring Accentuation and
 Metrical Structure from Grouping Structure. In Music, Gestalt and
 Computing - Studies in Systematic and Cognitive Musicology. M. Leman
 (ed.), Springer-Verlag, Berlin.

 Example: y = boundary(nmat)

55 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

combcontour
Function synopsis

Builds the Marvin & Laprade (1987) representation of melodic
contour

Function syntax
c = combcontour(nmat)

Function comments
 For a melody nmat with n notes, combcontour builds an n x n matrix
 of ones and zeros. A one is inserted in the i,j-th entry if the
 pitch of note i is higher than the pitch of note j. A zero is inserted
 otherwise. This matrix is a representation of melodic contour,
 preserving relative rather than specific pitch height information.

 Input arguments:
 NMAT = notematrix

 Output:
 C = matrix of ones and zeros representing melodic contour.

 Example:
 m = combcontour(nmat)

 Reference:
 Marvin, E. W. & Laprade, P. A. (1987). Relating music contours:
 Extensions of a theory for contour. Journal of Music Theory,
 31(2), 225-267.

complebm
Function synopsis

Expectancy-based model of melodic complexity (Eerola & North,
2000)

Function syntax
y = complebm(nmat, <method>)

Function comments
Expectancy-based model of melodic complexity based either on pitch or rhythm-related components or
on an optimal combination of them together (METHOD). The output is calibrated with the Essen
collection so that the mean value in the collection is 5 and standard deviation is 1. The higher the
output value is, the more complex the NMAT is.

Input arguments:
 NMAT = notematrix
 METHOD stands for a specific method:
 'p' = pitch-related components only
 'r' = rhythm-related components only
 'o' = optimal combination of pitch- and rhythm-related components
Output:

■ CHAPTER 5 – FUNCTION REFERENCE 56

■ MIDI Toolbox ■

 y = integer for complexity that is calibrated in relation to Essen Collection (Schaffrath,
1995). Higher values = higher complexity.
Example: Analyze a folk tune 'laksin' for its pitch-related complexity:
 compl_ebm(laksin,'p')
ans = 5.151

The answer means that the tune is somewhat more complicated than the average tune in Essen
collection (0.151 standard deviations higher).

References:
Eerola, T. & North, A. C. (2000) Expectancy-Based Model of Melodic Complexity. In Woods, C.,

Luck, G.B., Brochard, R., O'Neill, S. A., and Sloboda, J. A. (Eds.) Proceedings of the Sixth
International Conference on Music Perception and Cognition. Keele, Staffordshire, UK:
Department of Psychology. CD-ROM.

Schaffrath, H. (1995). The Essen folksong collection in kern format. [computer database]. Menlo Park,
CA: Center for Computer Assisted Research in the Humanities.

See also
compltrans

compltrans
Function synopsis

Melodic originality measure (Simonton, 1984)
Function syntax

s = compltrans(nmat)
Function comments
Calculates Simonton's (1984, 1994) melodic originality score based on 2nd order pitch-class
distribution of classical music that has been derived from 15618 classical music themes.

Input argument:
 NMAT = notematrix
Output:
 S = integer (inverse of averaged probability), scaled between 0 and 10 (higher value
indicates higher melodic originality.

References:
Simonton, D. K. (1984). Melodic structure and note transition probabilities: A content analysis of
15,618 classical themes. Psychology of Music, 12, 3-16.
Simonton, D. K. (1994). Computer content analysis of melodic structure: Classical composers and their
compositions. Psychology of Music, 22, 31-43.
See also
complebm

concur
Function synopsis

Detection of simultaneous onsets in a notematrix

57 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function syntax
c = concur(nmat,<threshold>)

Function comments
Calculates the number of simultaneous onsets in NMAT with certain beat THRESHOLD. This function
can be used in finding and eliminating short tracks in multichannel MIDI files.

Input arguments:
 NMAT= notematrix
 THRESHOLD = (optional) value for threshold for concurrent onsets. Default value is ± 0.2
beats
Output:
 C = integer displaying the proportion of concurrent onsets
Remarks:
 Only the NOTES vector is required for the input, other input arguments are optional and
will be replaced by default values if omitted.
Example:
 concur(nmat,0.25);

See also
channel, elim

createnmat
Function synopsis

Create isochronous notematrix
Function syntax

nmat = createnmat(notes,<dur>,<vel>,<ch>)
Function comments
Function creates a notematrix of isochronous pitches based on the NOTES vector. This is useful for
demonstration purposes and for creating stimuli with certain properties.

Input arguments:
 NOTES = pitch vector (e.g., [60 64 67] for C major chord)
 DUR (optional) = note durations in seconds (default 0.25)
 VEL (optional) = note velocities (0-127, default 100)
 CH (optional) = note channel (default 1)
Output:
 NMAT = notematrix
Remarks:
 Only the NOTES vector is required for the input, other input arguments are optional and
will be replaced by default values if omitted.
Example: Create major scale going up
 major = [0 2 4 5 7 9 11 12] + 60;
 nmat = createnmat(major,0.2);

■ CHAPTER 5 – FUNCTION REFERENCE 58

■ MIDI Toolbox ■

dir2coll
Function synopsis

Conversion of directory of midi files to cell matrix
Function syntax

[nm,name] = dir2coll(ofname)
Function comments
Function converts all MIDI files in a directory to cellmatrix structure (NM). The filenames are also
saved (NAME). If output filename (ofname) is given, the variables are saved as a Matlab *.MAT file.

Input arguments:
 OFNAME = 'filename' (string)
Output:
 NM = cell matrix of all MIDI files in a directory
 NAME = filenames (string)
Remarks:
 If the input argument is left out, no variables are saved.
Example: [nm,name] = dir2coll;
 Reads the midi files in the current directory to the cell matrix structure

dropmidich
Function synopsis

MIDI channel based filtering of notes
Function syntax

nmatf = dropmidich(nmat, ch)
Function comments
Filters out note events of NMAT that are on channel CH

Input arguments:
 NMAT = notematrix
 CH = number of midi channel to be filtered out
Output:
 NMATF = filtered notematrix
Example: Remove drum track of general MIDI file
 nmatf = dropmidich(nmat,10); %

dropshortnotes
Function synopsis

Filtering of short notes
Function syntax

nmatf = dropshortnotes(nmat, unit, threshold)

59 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

du
ra

tio
na

l a
cc

en
t

duration (in seconds)

Function comments
Filters out note events in NMAT that are shorter than THRESHOLD.

Input arguments:
 NMAT = notematrix
 UNIT = time unit for duration: possible values are 'sec' and 'beat'
 THRESHOLD = duration threshold for filtering
Output:
 NMATF = filtered notematrix
Example: Filter out notes shorter than 1/16:
 nmatf = dropshortnotes(nmat, 'beat', 1/16)

duraccent
Function synopsis

Duration accent by Parncutt (1994)
Function syntax

D = duraccent(dur,<tau>,<accent_index>)
Function comments
Function returns duration accent of the events (Parncutt, 1994, p. 430-431) where tau represents
saturation duration, which is proportional to the duration of the echoic store. Accent index covers the
minimum discriminable duration. The difference between Parncutt's model and this implementation is
on the IOI (inter-onset-intervals).

Input arguments:
 DUR = vector of note duration in
seconds
 TAU (optional) = saturation duration
(default 0.5)
 ACCENT_INDEX (optional) =
minimum discriminable duration (default 2)
Output:
 D = new duration vector
corresponding to the size of input vector
Remarks:
 The original model uses IOI (inter-
onset-intervals) for input whereas this version
takes the note duration value in seconds.

Example : duracc = duraccent(dursecs(NMAT));
References:
Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms.

Music Perception, 11(4), 409-464.

durdist1
Function synopsis

Note duration distribution

■ CHAPTER 5 – FUNCTION REFERENCE 60

■ MIDI Toolbox ■

Function syntax
dd = durdist1(nmat)

Function comments
Returns the distribution of note durations in NMAT as a 9-component vector. The centers of the bins
are on a logarithmic scale as follows:
 component bin center (in units of one beat)
 1 1/4
 2 sqrt(2)/4
 3 1/2
 4 sqrt(2)/2
 5 1
 6 sqrt(2)
 7 2
 8 2*sqrt(2)
 9 4

Input argument:
 NMAT = notematrix
Output:
 DD = 9-component distribution of note durations

See also
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2

durdist2
Function synopsis

Duration dyad distribution
Function syntax

dd = durdist2(nmat)
Function comments
Returns the distribution of pairs of note durations of successive notes as a 9 * 9 matrix. For bin centers,
see DURDIST1.

Input argument:
 NMAT = notematrix
Output:
 DD = 9 * 9 distribution matrix of note duration pairs

See also
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2

elim
Function synopsis

Elimination of "short" midi tracks

61 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function syntax
[nmate,coverage] = elim(nmat,<extent_crit>)

Function comments
Eliminates tracks shorter than EXTENT_CRIT from NMAT. Short tracks are those that are shorter
than EXTENT_CRIT as percentage of the whole duration.

Input arguments:
 NMAT = Notematrix
 EXTENT_CRIT (optional) = minimum proportion of duration that is
 required for the track (default value is 0.5, that is, 50% coverage)
Output:
 NMATE = new, eliminated notematrix
 COVERAGE = the proportion of onsets in MIDI track
Remarks: This function can be used in removing extra tracks from MIDI file.
Example: Eliminate those tracks that have onsets covering less than 20% of the whole duration:
 nmat2 =elim(nmat,0.2);

See also
concur

entropy
Function synopsis

Entropy of a distribution
Function syntax

function h = entropy(d)
Function comments
Returns the relative entropy of any distribution given as input argument.

Input argument:
 D = distribution
Output:
 H = relative entropy (0 =< H =< 1)

extreme
Function synopsis

Returns the extreme pitches (high or low) of a polyphonic NMAT
Function syntax

nm2 = extreme(nmat,<meth>)
Function comments

 Input argument:
 NMAT = notematrix
 METH (string) = method, either HIGH (default) or LOW

■ CHAPTER 5 – FUNCTION REFERENCE 62

■ MIDI Toolbox ■

 Output:
 NM2 = monophonic notematrix containing only highest/lowest pitches

 Remarks:

 Example: Obtain a new notematrix containing only the lowest lowest pitches:
 nm2 = extreme(nmat,'low');

filtercoll
Function synopsis

Filter collection using a specified FILTERNAME function
Function syntax

data = filtercoll(coll,filtername, <varargin>)
Function comments
FILTERCOLL works only with functions that take the notematrix as input argument.

Input arguments:
 COLL = name of the collection
 FILTERNAME = name of the FILTER function
 VARARGIN = possible other arguments to be passed to filter function FUNNAME
Output:
 DATA = vector or matrix containing the output of function FUNNAME with each
notematrix of the collection used as input argument.
Example:
 fnm = filtercoll(nm, 'trans',7); % transpose the whole collection a fifth up

getmidich
Function synopsis

Note events on a given MIDI channel
Function syntax

nmatf = getmidich(nmat, ch)
Function comments
Returns note events of NMAT that are on MIDI channel CH.

Input arguments:
 NMAT = notematrix
 CH = MIDI channel
Output:
 NMATF = notematrix containing notes of NMAT that are on MIDI channel CH

See also
perchannel

63 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

gettempo
Function synopsis

Get tempo (in BPM)
Function syntax

bpm = gettempo(nmat)
Function comments
Returns the tempo of the NMAT in beat per minute (BPM). Note that MIDI files can be encoded using
any arbitrary tempo and therefore the output of this function should be interpreted with caution.

Input argument:
 NMAT = notematrix
Output:
 BPM = tempo (in beats per minute)

See also
settempo

gradus
Function synopsis

Degree of melodiousness (Euler, 1739)
Function syntax

y = gradus (nmat)
Function comments
Calculates the degree of melodiousness (gradus suavitatis), proposed by L. Euler (1707-1783). He
suggested that the "degree of melodiousness depends on calculations made by the mind: fewer
calculations, the more pleasant the experience. [The model] is implemented by a numerical technique
based on the decomposition of natural numbers into a product of powers of different primes." (Leman,
1995, p. 5)

Input argument:
 NMAT = notematrix
Output:
 Y = integer (degree of melodiousness) where low value indicates high melodiousness
References:
Euler, L. (1739). Tentamen novae theoriae musicae.
Leman, M. (1995). Music and schema theory: Cognitive foundations of systematic musicology. Berlin:

Springer.

hz2midi
Function synopsis

Hertz to MIDI note number conversion

■ CHAPTER 5 – FUNCTION REFERENCE 64

■ MIDI Toolbox ■

Function syntax
m = hz2midi(hertz)

Function comments
Converts frequency values given in Hertz to MIDI note numbers. Notes are numbered in semitones
with middle C being 60. Midi note 69 (A3) has a frequency of 440 hertz (abbreviated Hz), i.e., 440
cycles per second.

Input arguments:
 HERTZ = frequency in hertz
Output:
 M = MIDI numbers

See also
pitch, notename

ismonophonic
Function synopsis
Returns 1 if NMAT is monophonic (logical function)
Function syntax

l = ismonophonic(nmat,<overlap>,<timetype>)
Function comments
 Returns 1 if the sequence has no overlapping notes in NMAT. Function is for
 finding errors in monophonic melodies and checking whether analysis is
 suitable for the selected NMAT. For example, ivdist1 cannot be meaningfully
 performed for a polyphonic input.

 Input argument:
 NMAT = notematrix
 OVERLAP (Optional) = Criteria for allowing short overlap between events.
 The default value is 0.1 seconds
 TIMETYPE (Optional) = timetype ('BEAT' or SEC (Seconds, default).

 Output:
 L = 1 is monophonic or 0 (contains overlap between the events)

ivdist1
Function synopsis

Distribution of intervals
Function syntax

ivd = ivdist1(nmat)
Function comments
Returns the distribution of intervals in NMAT as a 25-component vector. The components are spaced at
semitone distances with the first component representing the downward octave and the last component

65 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

the upward octave. The distribution is weighted by note durations. The note durations are based on
duration in seconds that are modified according to Parncutt's durational accent model (1994).

Input arguments:
 NMAT = notematrix
Output:
 IVD = interval distribution of NMAT

See also
plotdist, refstat , durdist1, durdist2, pcdist1, pcdist2

ivdist2
Function synopsis

Distribution of interval dyads
Function syntax

ivd = ivdist2(nmat)
Function comments
Returns the distribution of interval dyads in NMAT. The distribution is weighted by note durations.
The note durations are based on duration in seconds that are modified according to Parncutt's durational
accent model (1994).

Input arguments:
 NMAT = notematrix
Output:
 IVD = interval distribution of NMAT

See also
plotdist, refstat , durdist1, durdist2, pcdist1, pcdist2

ivdirdist1
Function synopsis

Distribution of interval directions
Function syntax

ivd = ivdirdist1(nmat)
Function comments
Returns the proportion of upward intervals for each interval size in NMAT as a 12-component vector.
The components are spaced at semitone distances with the first component representing minor second
and the last component the upward octave.

Input arguments:
 NMAT = notematrix
Output:
 IVD = interval direction distribution of NMAT

■ CHAPTER 5 – FUNCTION REFERENCE 66

■ MIDI Toolbox ■

See also
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2, ivsizedist1

ivsizedist1
Function synopsis

Distribution of interval sizes
Function syntax

ivd = ivsizedist1(nmat)
Function comments
Returns the distribution of interval sizes in NMAT as a 13-component vector. The components are
spaced at semitone distances with the first component representing the unison and the last component
the octave

Input arguments:
 NMAT = notematrix
Output:
 IVD = interval size distribution of NMAT
Example:
 plotdist(ivsizedist(laksin));

See also
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2

keymode
Function synopsis

Mode (major vs. minor) estimation
Function syntax

k = keymode(nmat)
Function comments
Functions estimates the key mode (1=major, 2=minor) based on Krumhansl-Kessler key finding
algorithm and pitch distribution of the NMAT. This function is used to assign TONALITY values to
NMAT.

Input argument:
 NMAT = notematrix
Output:
 K = estimated mode of NMAT (1=major, 2=minor)
Example: k = keymode(nmat)

See also
tonality, kkcc, kkkey , maxkkcc

67 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

keyname
Function synopsis

Conversion of key numbers to key names (text)
Function syntax

name=keyname(n,<detail>)
Function comments
Convert key numbers to key names (text). Encoding:
 1 = C, 2= C#/Db, ...
 13 = c, 14 = c#/db, ...
Input argument:
 N = key codes (obtained eg. using KKKEY function)
 DETAIL (optional) = 1 denotes long, otherwise short (default)
Output: text string

keysom
Function synopsis

Projection of pitch class distribution on a self-organizing map
Function syntax

function keysom(nmat,<cbar>,<cmap>,<tsize>)
Function comments

 Creates a pseudocolor map of
the pitch class distribution
 of NMAT projected onto a
self-organizing map trained
with the
 Krumhansl-Kessler profiles.

 Colors correspond to Pearson
correlation values.

 Input argument:
 NMAT =
notematrix
 CBAR (optional)
= colorbar switch (1 = legend
(default), 0 = no legend)
 CMAP (optional) = colormap (string, 'jet' (default), 'gray', etc.)
 TSIZE (optional) = textsize points (default = 16)

 References:
 Toiviainen, P. & Krumhansl, C. L. (2003). Measuring and modeling
 real-time responses to music: the dynamics of tonality induction.
 Perception, 32(6), 741-766.

 Krumhansl, C. L., & Toiviainen, P. (2001) Tonal cognition.
 In R. J. Zatorre & I. Peretz (Eds.), The Biological Foundations of Music.

■ CHAPTER 5 – FUNCTION REFERENCE 68

■ MIDI Toolbox ■

Beat 2.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 4.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 6.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

Beat 8.0

C

Db

D

Eb

E

F

Gb

G

Ab

A

Bb

B

c

c#

d

d#

e

f

f#

g

ab

a

bb

b

 Annals of the New York Academy of Sciences.
 New York, NY: New York Academy of Sciences, 77-91.

keysomanim
Function synopsis

m = keysomanim(nmat, <stmem>, <step>, <ttype>, <opt>)
Function syntax

Animation using the KEYSOM function
Function comments

 Input arguments:
 NMAT = notematrix
 STMEM (optional) = length of short-term memory (default = 6 beats)
 length indicates the time constant of exponentially
 decaying memory
 STEP (optional) =window step in beats (default = 0.5)
 TIMETYPE (optional) = time type ('beat' (default) or 'sec')
 OPT (optional) = Options: 'MOVIE' creates a MATLAB movie
 'STRIP' creates a strip of the animation frames
 instead of the animation.
 'FRAMES' save each individual frame as a
 jpg file to current
directory
 If no option is
given, the function just
 displays the
frames
 Output arguments:
 M = MATLAB movie (if OPT has
not been set to 'strip'

 Example:
 m = keysomanim(nm, 3, 0.2, 'sec',
'movie'); % create a movie using a
 3-sec window and a step of 0.2
seconds

 References:
 Toiviainen, P. & Krumhansl, C. L. (2003). Measuring and modeling
 real-time responses to music: the dynamics of tonality induction.
 Perception, 32(6), 741-766.

 Krumhansl, C. L., & Toiviainen, P. (2001) Tonal cognition.
 In R. J. Zatorre & I. Peretz (Eds.), The Biological Foundations of Music.
 Annals of the New York Academy of Sciences.
 New York, NY: New York Academy of Sciences, 77-91.

69 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

kkcc
Function synopsis

Correlations of pitch-class distribution with Krumhansl-Kessler
tone profiles

Function syntax
c = kkcc(nmat,<opt>)

Function comments
Returns the correlations of the pitch class distribution PCDIST1 of NMAT with each of the 24
Krumhansl-Kessler profiles.

Input arguments:
 NMAT = notematrix
 OPT = OPTIONS (optional), 'SALIENCE' return the correlations of the
 pitch-class distribution according to the Huron & Parncutt (1993)
 key-finding algorithm.
Output:
 C = 24-component vector containing the correlation coefficients between the pitch-class
distribution of NMAT and each of the 24 Krumhansl-Kessler profiles.

Remarks: REFSTAT function is called to load the key profiles.

Example: c = kkcc(nmat, 'salience')

Reference:
Huron, D., & Parncutt, R. (1993). An improved model of tonality perception incorporating pitch

salience and echoic memory. Psychomusicology, 12, 152-169.
Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University

Press.

See also
refstat, keymode, kkkey, maxkkcc

kkkey
Function synopsis

Key of NMAT according to the Krumhansl-Kessler algorithm
Function syntax

k = kkkey(nmat)
Function comments
Returns the key of NMAT according to the Krumhansl-Kessler algorithm.

Input argument:
 NMAT = notematrix
Output:
 K = estimated key of NMAT encoded as a number
 encoding: C major = 1, C# major = 2, ...
 c minor = 13, c# minor = 14, ...
Reference:

■ CHAPTER 5 – FUNCTION REFERENCE 70

■ MIDI Toolbox ■

Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University
Press.

See also
kkccsalience, refstat, keymode, maxkkcc

maxkkcc
Function synopsis

Maximum correlation from Krumhansl-Kessler algorithm
Function syntax

r = maxkkcc(nmat)
Function comments
Returns the maximum across the correlations between the pitch class distribution of NMAT and each
of the 24 Krumhansl-Kessler profiles.

Input argument:
 NMAT = notematrix
Output:
 R = maximum correlation
Change History :
 10.6.2002 P. Toiviainen
Reference:
Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University

Press.

See also
kkccsalience, refstat, keymode, kkkey

mchannels
Function synopsis

MIDI channels used in notematrix
Function syntax

ch = mchannels(nmat)
Function comments
Returns the midi channels that are used in notematrix NMAT.

Input argument:
 NMAT = notematrix
Output:
 CH = vector containing the numbers of all MIDI channels that are used in NMAT

See also
perchannel

71 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

0 1 2 3 4 5 6 7
A3#
B3
C4
C4#
D4
D4#
E4
F4
F4#
G4

Time in seconds

Pi
tc

h

0 1 2 3 4 5 6 7
0

0.5

1

ac
ce

nt
 v

al
ue

melaccent
Function synopsis

Melodic accent salience according to Thomassen's model
Function syntax

ma = melaccent(nmat)
Function comments
Calculates melodic accent salience according to Thomassen's model. This model assigns melodic
accents according to the possible melodic contours arising in 3-pitch windows. Accent values vary
between 0 (no salience) and 1 (maximum salience).

Input arguments:
 NMAT = notematrix
Output:
 MA = accent values

Example:
 example = createnmat([60 60
62 64 65 64 62],1);
 subplot(2,1,1);
pianoroll(example,2,2)
 subplot(2,1,2);
stem(m(2:end));
 axis([0 6.5 0 1]); ylabel('accent
value');

Reference:
Thomassen, J. (1982). Melodic accent: Experiments and a tentative model. Journal of the Acoustical

Society of America, 71(6), 1598- 1605; see also, Erratum, Journal of the Acoustical Society
of America, 73(1), 373.

melattraction
Function synopsis

Melodic attraction according to Lerdahl (1996)
Function syntax

m = melattraction(nmat)
Function comments
 Calculates melodic attraction according to Fred Lerdahl (1996, p. 343-349):
 Each tone in key has certain anchoring strength ("weight") in tonal pitch space
 Melodic attraction strength is note2/note1 in a two-note window, which is
 affected by the distance between tones.

 The algorithm has two extensions:
 Extension 1: attraction is modified not only by subsequent neighbor but also
 on the pitch's other neighbors (this is realized in the way Lerdahl suggested,
 not only limiting the attraction to one neighbor but to all possible neighbors).
 Extension 2: directed motion also affects melodic attraction (this is done somewhat

■ CHAPTER 5 – FUNCTION REFERENCE 72

■ MIDI Toolbox ■

0 2 4 6 8 10 12 14 16 18
D4
D4#
E4
F4
F4#
G4
G4#
A4
A4#
B4
C5

Time in beats

Pi
tc

h
0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

M
el

od
ic

 a
ttr

ac
tio

n

Time in beats

 differently than in Lerdahl's paper due to modification of the first extension).

 Remarks:
 The output has been scaled to fit
between 0 and 1, larger value
 indicating higher melodic
attraction. Also, the key and the
mode needs to be inferred
 in order to apply correct tonal
pitch space values.

 Input arguments:
 NMAT = notematrix

 Output:
 M = Melodic attraction
values for each note in the NMAT
(between 0-1)

 Example:
 melattraction(reftune('laksin'));

 Reference:
 Lerdahl, F. (1996). Calculating tonal tension. Music Perception, 13(3), 319-363.

melcontour
Function synopsis

Contour vector
Function syntax

function c = melcontour(nmat,res,meth,<opt>)
Function comments
 Returns the contour vector of the melody in NMAT.

 Input arguments:
 NMAT = note matrix
 RES = parameter defining the temporal resolution of C (see below)
 METH = method for defining temporal resolution (= 'abs' or 'rel')
 if METH=='abs', RES is defined as the sampling interval
 in beats
 if METH=='rel', RES is defined as the number of sampling
 points
 default value for METH is 'abs'
 OPT = if 'AC', returns the autocorrelation function of the contour vector of NMAT

 Output:
 C = contour vector (or autocorrelation vector)

 Example:
 c = melcontour(NMAT, 0.25, 'abs'); % uses a step of 0.25 beats
 c = melcontour(NMAT, 32, 'rel'); % uses 32 sampling points
 ac = melcontour(NMAT, 0.5, 'abs','ac'); % Autocorrelation function of the contour

73 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

meldistance
Function synopsis

Measurement of distance between two NMATs
Function syntax

y=melsim(nmat1,nmat2,<repr>,<metric>,<samples>,<rescale>)
Function comments
 Calculates the similarity of two NMATs in a particular representation.
 Output is a value indicating distance between nmat1 and nmat2 under
 the given representation and metric. Output value is rescaled to [0, 1] if
 rescale is set to 1.

 Input arguments:
 NMAT1= first notematrix
 NMAT2= second notematrix
 REPR= string denoting the specific representation used for comparison of the two NMATs:
 'pcdist1' (default)= distribution of pitch classes
 'pcdist2'= distribution of pitch class dyads
 'ivdist1'= distribution of intervals
 'ivdist2'= distribution of interval dyads
 'contour'= melodic contour (input number of samples)
 'combcontour'= Combinatorial Contour (does not accept a metric argument)
 'durdist1'= distribution of note durations
 'durdist2'= distribution of note duration dyads
 METRIC= string denoting the distance metric used for comparison:
 'taxi' (default)=the taxicab norm
 'euc'=euclidean distance measure
 'cosine' =measure of cosine of the angle between vectors
 SAMPLES= integer number of samples for contour representation.
 default value is 10.
 RESCALE= rescales distance to similarity value between 0 and 1. Default
 is no rescaling. Set to 1 to rescale values.

 Output:
 y = value representing the distance between the two
 melodies under the given representation and metric.

 Example:
 meldistance(nmat1,nmat2,'pcdist1','taxi');

meter
Function synopsis

Autocorrelation-based estimate of meter
Function syntax

m = meter(nmat,<option>)
Function comments
Returns an autocorrelation-based estimate of meter of NMAT.
Based on temporal structure and on Thomassen's melodic accent.

■ CHAPTER 5 – FUNCTION REFERENCE 74

■ MIDI Toolbox ■

Uses discriminant function derived from a collection of 12000 folk melodies.
m = 2 for simple duple
m = 3 for simple triple/compound meters (3/8, 3/4, 6/8, 9/8, 12/8, etc.)

 Input argument:
 NMAT = notematrix
 OPTION (Optional, string) = Argument 'OPTIMAL' uses a weighted combination
 of duration and melodic accents in the inference of meter (see Toiviainen & Eerola, 2004).

Input argument:
 NMAT = notematrix
Output:
 M = estimate of meter (M=2 for duple; M=3 for triple)
Reference:
 Brown, J. (1993). Determination of the meter of musical scores by autocorrelation. Journal of the

Acoustical Society of America, 94(4), 1953-1957.
 Toiviainen, P. & Eerola, T. (2004). The role of accent
periodicities in meter induction:
 a classification study, In x (Ed.), Proceedings of the ICMPC8
(p. xxx-xxx). xxx:xxx.

meteraccent
Function synopsis

Measure of phenomenal accent synchrony
Function syntax

a = meteraccent(nmat)
Function comments
Returns a measure of phenomenal accent synchrony. It consists of durational accents, pitch accents and
accentuation from inferred metrical hierarchy. If these accents coincide, accents are highly
synchronized.

Input arguments:
 NMAT = notematrix
Output:
 A = integer
References:
Eerola, T., Himberg, T., Toiviainen, P., & Louhivuori, J. (submitted). Perceived complexity of Western

and African folk melodies by Western and African listeners.
Jones, M. R. (1987). Dynamic pattern structure in music: Recent theory and research. Perception and

Psychophysics, 41, 621-634.

See also
meter

metrichierarchy
Function synopsis

Location of notes in metric hierarchy

75 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function syntax
mh = metrichierarchy(nmat)

Function comments
 Returns a vector indicating the location of each note of NMAT
 in metric hierarchy. The meter of NMAT is estimated using the
 function METER.

 Input argument:
 NMAT = notematrix

 Output:
 MH = vector indicating the location of each note in metric
 hierarchy; encoding:
 strong beat = 5, weak beat = 4, etc.

See also
meter

midi2hz
Function synopsis

Conversion of MIDI note number to frequency (Hz)
Function syntax

f = midi2hz(m)
Function comments
 Convert MIDI note numbers to frequencies in Hz. The A3
 (Midi number 69) is 440Hz.

 Input arguments: M = MIDI note numbers

 Output: F = Frequency in hertz

 Example: midi2hz(pitch(createnmat));

mobility
Function synopsis

Mobility (Hippel, 2000)
Function syntax

y= mobility(nmat)
Function comments
 Mobility describes why melodies change direction after large skips
 by simply observing that they would otherwise run out of the
 comfortable melodic range. It uses lag-one autocorrelation between
 successive pitch heights (Hippel, 2000).

■ CHAPTER 5 – FUNCTION REFERENCE 76

■ MIDI Toolbox ■

 Input argument:
 NMAT = notematrix

 Output:
 Y = mobility value for each tone in NMAT

 See also: NARMOUR, TESSITURA

 Example: y = mobility(nmat)

 References:
 von Hippel, P. (2000). Redefining pitch proximity: Tessitura and
 mobility as constraints on melodic interval size. Music Perception,
 17 (3), 315-327.

movewindow
Function synopsis

Windowed analysis of notematrix using a specified function
Function syntax

y = movewindow(nmat,wlength,wstep,timetype,varargin)
Function comments
 Applies function defined in VARARGIN to a series of windowed note matrices
 using window length WLENGTH and step WSTEPs across NMAT
 Input arguments:
 NMAT = notematrix
 WLENGTH = window length in seconds
 WSTEP = window step size in seconds
 TIMETYPE = time representation, 'beat' (default) or 'sec'
 VARARGIN = function (string) or functions
Output:
 Y = output of the function VARARGIN (or nested function FUNC2(FUNC1) etc.)
 applied to NMAT

 Example 1: Find maximal key correlation within a 3-second window -
 that is moved by 1.5 seconds at a time - of NMAT
 y = movewindow(nmat,3,1.5,'sec','maxkkcc');

 Example 2: Find average key velocity within a 6-second window -
 that is moved by 2 seconds at a time - of NMAT
 y = movewindow(nmat,6,2,'velocity','mean');

narmour
Function synopsis

Predictions from Implication-realization model by Narmour (1990)
Function syntax

n = narmour(nmat,prin)

77 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function comments
 Returns the predictions from Implication-realization model of melodic expectancy by Eugene Narmour
(1990)

 Input arguments: NMAT = notematrix
 PRIN (string) denotes a specific principle:
 rd = registral direction (revised, Schellenberg 1997)
 rr = registral return (revised, Schellenberg 1997)
 id = intervallic difference
 cl = closure
 pr = proximity (revised, Schellenberg 1997)
 co = consonance (Krumhansl, 1995)

 Output: N = vector for all the tones in NMAT

 Example: narmour(nmat, 'rd');

 References:
 Narmour, E. 1990. The Analysis and cognition of basic melodic structures: The Implication-realization
 model. Chicago, IL: University of Chicago Press.
 Krumhansl, C. L. (1995). Effects of musical context on similarity and expectancy.
 Systematische musikwissenschaft, 3, 211-250.
 Schellenberg, E. G. (1997). Simplifying the implication-realization model of
 melodic expectancy. Music Perception, 14, 295-318.

nmat2snd
Function synopsis

Create waveform of NMAT using a simple synthesis
Function syntax
w = nmat2snd(nmat, <synthtype>,<fs>)

Function comments
 Create waveform of NMAT using a simple FM synthesis. The
default sampling rate is

 8192 Hz and velocities are scaled to have
 a max value of 1.

 SYNTHTYPE 'fm' (default) uses FM synthesis to approximate horn sound.
 SYNTHTYPE 'shepard' creates waveform of NMAT using Shepard tones. These tones have also been
 called 'Circular tones' because they are specifically constructed to contain
 frequency components at octave intervals with an emphasis of the spectral
 components between 500Hz and 1000 Hz that effectively
 eliminates octave information (Shepard, 1964).

 Part of the code has been obtained from the work of Ed Doering.
 Ed.Doering@Rose-Hulman.Edu

 Input argument:
 NMAT = notematrix
 SYNTHTYPE (Optional) = Synthesis type, either FM synthesis ('fm', default)
 or Shepard tones ('shepard')
 FS (optional) = sampling rate (default 8192)

■ CHAPTER 5 – FUNCTION REFERENCE 78

■ MIDI Toolbox ■

 Output:
 Y = waveform

 Example 1: samples1 = nmat2snd(laksin);
 Example 2: samples2 = nmat2snd(laksin,'shepard', 22050);

 Reference:
 Moore, F. R. (1990). Elements of Computer Music. New York: Prentice-Hall.
 Shepard, R. N. (1964). Circularity in judgements of
 relative pitch. Journal of the Acoustical Society of America,
 36, 2346-2353.

nnotes
Function synopsis

Number of notes in NMAT
Function syntax

n = nnotes(nmat)
Function comments
 Returns the number of notes in NMAT

 Input argument:
 NMAT = notematrix

 Output:
 N = number of notes in NMAT

notedensity
Function synopsis

Number of notes per beat or second
Function syntax

n = notedensity(nmat,<timetype>)
Function comments
 Returns the number of notes per beat or second in NMAT

 Input argument:
 NMAT = notematrix
 TIMETYPE (Optional) = timetype ('BEAT' (default) or SEC (Seconds).

 Output:
 N = Note density (in beats or seconds) in NMAT

79 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

notename
Function synopsis

Conversion of MIDI numbers to American pitch spelling (text)
Function syntax

names = notename(n)
Function comments
 Converts MIDI numbers to American pitch spelling (text) where C4#
 denotes C sharp in octave 4. Octave 4 goes from middle C up to
 the B above middle C.

 Input argument:
 N = The pitches of NMAT (i.e. pitch(nmat))

 Output: text string of equivalent size of N.

See also
pianoroll, hz2midi, midi2hz

nPVI
Function synopsis

Measure of durational variability of events (Grabe & Low, 2002)
Function syntax

function n = nPVI(nmat)
Function comments
 This measure is borne out of language research. It has been noted that
 the variability of vowel duration is greater in stress- vs. syllable-timed
 languages (Grabe & Low, 2002). This measure accounts for the
 variability of durations and is also called "normalized Pairwise Variability
 Index" (nPVI). Patel & Daniele have applied it to music (2003) by comparing
 whether the prosody of different languages is also reflected in music. There is
 a clear difference between a sample of works by French and English composers.

 Input arguments: NMAT = notematrix

 Output: N = nPVI index

 Example: the variability of duration in LAKSIN (a Finnish folk tune available in demos)
 nPVI(laksin);
 ans = 26.3861

 References:
 Patel, A. D. & Daniele, J. R. (2003). An empirical comparison of rhythm in
 language and music. Cognition, 87, B35-B45.
 Grabe, E., & Low, E. L. (2002). Durational variability in speech and the
 rhythm class hypothesis. In C. Gussen-hoven & N. Warner, Laboratory
 phonology (pp. 515-546). 7. Berlin: Mouton de Gruyter.

■ CHAPTER 5 – FUNCTION REFERENCE 80

■ MIDI Toolbox ■

onsetacorr
Function synopsis

Autocorrelation function of onset times
Function syntax

ac = onsetacorr(nmat, <ndivs>, <fig>,<func>)
Function comments
 Returns autocorrelation of onset times weighted by onset durations.
 These onset durations, are in turn, weighted by Parncutt's durational accent (1994).
 This function optionally creates a graph showing the autocorrelation function calculated
 from onset times weighted by note durations. Finally, a user-defined function (FUNC)
 can be used to weight the autocorrelation function. For example, TONALITY function
 is a way of weighting the onset structure by their tonal stability values. MELACCENT may
 also work in some situations.

 Input arguments:
 NMAT = notematrix
 NDIVS (optional) = divisions per quarter note (default = 4);
 FIG (optional) = plot figure (yes=1, no=0, default=0)
 FUNC (optional, string) = Optional function that weights the results, for example
 'tonality' function would weight the onsets by their tonal stability
 values in addition to note durations.
 Output:
 AC = values of autocorrelation function between lags 0 ... 8 quarter notes

 Reference:
 Brown, J. (1992). Determination of meter of musical scores by
 autocorrelation. Journal of the acoustical society of America, 94 (4), 1953-1957.
 Parncutt, R. (1994). A perceptual model of pulse salience and metrical
 accent in musical rhythms. Music Perception, 11(4), 409-464.
 Toiviainen, P. & Eerola, T. (2004). The role of accent
periodicities in meter induction:
 a classification study, In x (Ed.), Proceedings of the ICMPC8 (p. xxx-xxx). xxx:xxx.

onsetdist
Function synopsis

Distribution of onset times within a measure
Function syntax

dist = onsetdist(nmat, nbeats,<fig>)
Function comments
 Returns the distribution of onset times within a measure with
 a length of NBEATS

 Input arguments:
 NMAT = notematrix
 NBEATS = beats per measure
 FIG (Optional) = Figure flag (1=figure, 0=no figure)

81 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

 Output:
 DIST = distribution of onset times

onsetwindow
Function synopsis

Onset time based windowing
Function syntax

nm = onsetwindow(nmat,mintime,maxtime,<timetype>)
Function comments
 Returns the notes in NMAT whose onset times satisfy
 MINTIME < onsettime[beats/secs](NMAT) <= MAXTIME

 Input arguments:
 NMAT = notematrix
 MINTIME = minimum limit of the window in beats (default) or secs
 MAXTIME = maximum limit of the window in beats (default) or secs
 TIMETYPE = time representation, 'beat' (default) or 'sec'

Output:
 NM = notematrix containing the notes of NMAT whose onsets
 are within the window

pcdist1
Function synopsis

Pitch-class distribution weighted by note durations
Function syntax

pcd = pcdist1(nmat)
Function comments
 Calculates the pitch-class distribution of NMAT weighted by note durations. The note
 durations are based on duration in seconds that are modified according to Parncutt's
 durational accent model (1994).

 Input argument:
 NMAT = notematrix

 Output:
 PCD = 12-component vector listing the probabilities of
 pitch-classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, B).

 Example: pcd = pcdist1(nmat)

See also
plotdist, refstat , durdist1, durdist2, ivdist1, ivdist2

■ CHAPTER 5 – FUNCTION REFERENCE 82

■ MIDI Toolbox ■

pcdist2
Function synopsis

2nd order pitch-class distribution
Function syntax

pcd = pcdist2(nmat)
Function comments
 Calculates the 2nd order pitch-class distribution of NMAT
 weighted by note durations. The note durations are based on
 duration in seconds that are modified according to Parncutt's
 durational accent model (1994).

 Input argument:
 NMAT = notematrix

 Output:
 PCD = 2nd order pitch-class distribution of NMAT
 12 * 12 matrix
 e.g. PCD(1,2) = probability of transitions from C to C#

See also
plotdist, refstat , durdist1, durdist2, ivdist1, ivdist2

perchannel
Function synopsis

Channel-by-channel analysis of notematrix using a specified
function. Works only with functions returning either scalar or row
vector.

Function syntax
chout = perchannel(nmat,varargin)

Function comments
 Channel-by-channel analysis of notematrix using a specified function

 Input argument:
 NMAT = note matrix
 FUNC = function (string)

 Output:
 chout = scalar or row vector for each channel. Size depends on the FUNC.

 Example:
 p=perchannel(nmat,'pcdist1');

83 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

See also
getmidich, mchannels

pianoroll
Function synopsis

Plot pianoroll notation of NMAT
Function syntax

pianoroll(nmat,<varargin>)
Function comments
 Plots pianoroll notation of NMAT and takes several optional arguments
 that affect the information displayed.

 Input arguments:
 NMAT = notematrix
 VARARGIN = various optional input arguments:
 'name' = note names for y-axis (default)
 'num' = MIDI numbers for y-axis
 'beat' = beats for x-axis (default)
 'sec' = seconds for x-axis
 'vel' = plot note velocities
 'mh' = plot metric hierarchy
 Color parameters, e.g. 'g' = Green pitches in pianoroll
 'hold' = current pianoroll is added to a previous figure

 Output: Figure

 Remarks: Function displays NMATs with multiple channels using different colors
 for the different channels. A simple optimization of Y-scale labels is used
 to increase the legibility of the output.
 Also, the C notes are marked with dotted line in the plot.

 Example 1: Plot pitches and their velocities using seconds as the x-axis
 pianoroll(nmat,'vel','sec');

 Example 2: Plot two separate melodies into the same figure
 pianoroll(nmat1,'r'); % 1st melody in red color
 pianoroll(nmat2,'b','hold'); % 2nd melody in blue color

 Example 3: Plot multichannel NMAT (plot channels using different colors)
 pianoroll(nmat3,'num'); %

playmidi
Function synopsis

Creates a temporary MIDI file and plays it using a suitable
program

■ CHAPTER 5 – FUNCTION REFERENCE 84

■ MIDI Toolbox ■

Function syntax
q = playmidi(nmat,<tempo>)

Function comments
 Creates a temporary MIDI file and plays it using a suitable program

 Input argument:
 NMAT = Notematrix
 TEMPO (optional)= tempo (default 120 bpm)

 Output: Opens up MIDI Player and plays temp.mid in the player.

 Remarks: The player depends on the operating system (Macintosh, PC, Linux).
 In Windows or MacOS X, the player is defined by definemidiplayer function.

 Example : playmidi(nmat,145);
 plays nmat with the tempo 145 beats per minute

playsound
Function synopsis

Play NMAT using a simple synthesis
Function syntax

q = playsound(nmat)
Function comments
Create waveform of NMAT using a simple FM synthesis. The default sampling rate is
8192 Hz and velocities are scaled to have
a max value of 1 before passing to the fm_synth function.

 Input argument:
 NMAT = notematrix
 SYNTHTYPE (Optional) = Synthesis type, either FM synthesis ('fm', default)
 or Shepard tones ('shepard')
 FS (optional) = sampling rate (default 8192)

 Output:
 none (played through SOUNDSC)

Example 1: playsound(laksin);
Example 2: playsound(laksin,'shepard', 22050);

plotdist
Function synopsis

Plotting of distributions
Function syntax

p = plotdist(dist ,<param>)

85 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function comments

 This function creates a graph of note-, interval- or duration
 distributions or transitions. This purpose of the command is make
 creating simple figures easier.

 Input arguments:
 DIST = Distribution of:
 pitch-classes (12), intervals (25) or durations (9) OR
 the transitions of the same features;
 pitch-class transitions (12 x 12), interval transitions (25 x 25),
 durations transitions (9 x9) or key correlations (24),
 interval sizes (1x13) or intervals directions (1x12). For the last one,
% a simple heuristic is used to distinguish it from the pitch-class distribution.

 PARAM (optional) = color parameters (e.g. 'k' for black
 bars or [.1 .4 .9] for specific colors).
 For transition plots, use 'hot' or other colormap
 definition. Default color is gray in both cases.
 Output: Figure

 Remarks: The distribution needs to be calculated separately.

 Example: Create note transition figure of laksin MIDI file
 plotdist(pcdist2(laksin))

plothierarchy
Function synopsis

Plot metrical hierarchy
Function syntax

fig = plothierarchy(nmat)
Function comments
 Plots metrical hierarchy based on meter-finding and assigning
 metrical grid to each note according to its position in the grid.
 Lerdahl & Jackendoff (1983).

 Input argument:
 NMAT = notematrix

 Output:
 FIG = Figure

 Reference:
 Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music.
 Cambridge, MA: MIT Press.

■ CHAPTER 5 – FUNCTION REFERENCE 86

■ MIDI Toolbox ■

plotmelcontour
Function synopsis

Plot melodic contour using STEP resolution
Function syntax

p = plotmelcontour(nmat,<step>,<meth>,<options>)
Function comments
Plot melodic contour using a user-defined resolution. Various other output
options can be used (VARARGIN).

Input argument:
 NMAT = notematrix
 VARARGIN = Various other parameters:
 STEP (numeric) = resolution (optional), see 'abs' or 'rel' below:
 'abs' defines the sampling interval in beats (default)
 rel' defines the number of sampling points
 'beat' (default) defines the timetype in beats
 'sec' defines the timetype in seconds
 COLOR OPTIONS, e.g., 'r:' for red, dotted line... (optional)
 'ac' for autocorrelation figure (optional).
 This option plots the contour self-similarity of NMAT.
 The similarity is based on autocorrelation, where the melodic contour
 is correlated with a copy of itself. A short duration (approximately one
 measure) from the beginning is left out in the plot.

 Output:
 P = Figure

Example 1: plot melodic contour
 plotmelcontour(laksin,0.1,'abs',':ok');
Example 2: plot contour self-similarity
 plotmelcontour(laksin,0.1,'abs','r','ac');

See also
melcontour

quantize
Function synopsis

Quantize note onsets and durations of NMAT
Function syntax

nm2= quantize(nmat, onsetres, <durres>, <filterres>)
Function comments
 Quantize note events in NMAT according to onset resolution
 (ONSETRES), durations resolution (DURRES) and optionally filter
 note events shorter than the filter threshold (FILTERRES).

 Input arguments:
 NMAT = notematrix

87 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

 ONSETRES = onset threshold for quantization (e.g., quarter note = 1/4).
 Default value is 1/8 note.
 DURRES (optional) = duration threshold for quantization. Default is double
 the value of ONSETRES.
 FILTERRES (optional) = duration threshold for filtering out notes. For example,
 to filter out eight notes and shorter notes events, FILTERRES of
 1/8 can be used.

 Output:
 NM2 = quantized notematrix

 Example: Quantize NMAT to quarter notes (onsets and durations)
 and filter out all notes shorter than 1/8 beats
 nm2 = quantize(nmat, 1/4, 1/4,1/8);

readmidi
Function synopsis

Conversion of MIDI file to notematrix
Function syntax

nmat = readmidi(fn)
Function comments

 Input argument:
 FN = name of the MIDI file (string)

 Output:
 NMAT = notematrix

See also
writemidi

refstat
Function synopsis

Returns reference statistic of melody and associated labels
specified by STAT

Function syntax
[ref, label] = refstat(stat)

Function comments
 REFSTAT function returns a selected reference statistic of melody (STAT):

 Input arguments: STAT= any of the following strings:
 kkmaj = Krumhansl & Kessler (1982) major key profile (tonality)
 kkmin = Krumhansl & Kessler (1982) minor key profile (tonality)
 kkmajt = Krumhansl & Kessler (1982) major key profile modified by Temperley (1999)
 kkmint = Krumhansl & Kessler (1982) minor key profile modified by Temperley (1999)

■ CHAPTER 5 – FUNCTION REFERENCE 88

■ MIDI Toolbox ■

 pc_all = Pitch-Classes in the Essen Collection (ALL songs, incl. Asian) by Schaffrath (1995)
 pc_europe_maj = Pitch-classes in Essen Collection (Major songs, not incl. Asian)
 pc_europe_min = Pitch-classes in Essen Collection (Minor songs, not incl. Asian)
 iv_all = Intervals from Essen folksong collection
 ivnd_europe = Intervals (no direction) from Essen col., not incl. Asian)
 ivudr_europe = Intervals (up, down, repeat) Essen col., not incl. Asian)
 iv_europe_maj = Interval transitions (Essen col., Major, Non-Asian)
 ivdia_europe = Interval transitions, diatonic only (Essen col., not incl. Asian)
 ivdiand_europe = Interval transitions, diatonic only, no direction (Essen col., not incl. Asian)
 iv2 = Interval transitions (From Essen folksong collection) (VECTOR)
 twotone = Pitch-class transitions in Essen Collection (VECTOR)
 pcdist1essen = Pitch-classen in Essen Collection (All songs, not incl. Asian, N=6231)
 ivdist1essen = Intervals from Essen folksong collection (not incl. Asian)
 durdist1essen = Duration distribution (From Essen folksong collection)
 ivdist2essen = Interval transitions (From Essen folksong collection) (MATRIX)
 pcdist2essen = Pitch-class transitions (From Essen folksong collection) (MATRIX)
 durdist2essen = Duration transitions (From Essen folksong collection) (MATRIX)
 pcdist2classical1 = Tone-transition probabilities from 16000 + classical music themes (Simonton,
1984)
 pcdist2classical2 = Frequency of occurrence of melodic intervals by Youngblood (1958)
 pcdist1schubert = Pitch-class distribution in Schubert pieces (Major key, Knopoff & Hutchinson
(1983)

 Output: REF = probability vector for each component in the statistic. For example, major key profile
is:
 ref=[6.35,2.23,3.48,2.33,4.38,4.09,2.52,5.19,2.39,3.66,2.29,2.88];
 LABEL = label for each statistic. As above this, would output:
 'C','C#','D','D#','E','F','F#','G','G#','A','A#','B'

 References:
 Knopoff, L. & Hutchinson, W. (1983). Entropy as a measure of style:
 The influence of sample length. Journal of Music Theory, 27, 75-97.
 Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes
 in perceived tonal organization in a spatial representation of musical
 keys. Psychological Review, 89, 334-368.
 Schaffrath, H. (1995). The Essen Folksong Collection in Kern Format.
 [computer database] D. Huron (Ed.). Menlo Park, CA: Center for
 Computer Assisted Research in the Humanities.
 Simonton, D. K. (1984). Melodic structure and note transition probabilities:
 A content analysis of 15,618 classical themes. Psychology of
 Music, 12, 3-16.
 Temperley, D. (1999). What's Key for Key? The Krumhansl-Schmuckler
 key-finding algorithm reconsidered. Music Perception, 17, 65-100.
 Youngblood, J.E. (1958). Style as information. Journal of Music
 Theory, 2, 24-35.

 Example 1: Get major key profile by Krumshansl & Kessler (1982):
 major = refstat('kkmaj');

 Example 2: Get interval transition probabilities in the Essen collection and the
 respective labels for all interval transitions:
 [inttrans,label] = refstat('ivdist2essen');

reftune
Function synopsis

Obtain a 'reference' or example tune

89 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function syntax
nmat = reftune('name',<dur>)

Function comments
 Input arguments: NAME= any of the following strings:
 dowling1 = Dowling (1973) tune 1
 dowling1 = Dowling (1973) tune 2
 int1-12 = Hartmann & Johnson (1991) tunes 1-12
 probe = Sample probe sequence (demonstrated in the Manual)
 tritone = 12 random tritone intervals demonstrating the Tritone Paradox (Deutsch, 1991)
 laksin = Two phrases of a Finnish Folk, "Läksin Minä Kesäyönä"
 DUR(optional) = duration of tones in target NAME tune

 Output: NMAT = the sequence as a notematrix

 References:
 Dowling, W. J. (1973). The perception of interleaved melodies,
 Cognitive Psychology,5, 322-337.
 Hartmann, W. M., & Johnson, D. (1991). Stream segregation and
 peripheral channeling. Music Perception, 9(2), 155-184.
 Deutsch, D. (1991). The tritone paradox: An influence of language
 on music perception. Music Perception, 8, 335-347.
 Repp, B. (1994). The tritone paradox and the pitch range of the
 speaking voice: A dubious connection. Music Perception, 12, 227-255.

scale
Function synopsis

Scaling of notematrix values
Function syntax

nm = scale(nmat,dim,factor)
Function comments
 Scales note data in given dimension (time, onset time, or duration)

 Input arguments:
 NMAT = notematrix
 DIM = dimension ('time', 'onset', 'dur' or 'vel')
 FACTOR = amount of scale (must be > 0)

 Output:
 NM = notematrix containing the scaled version of NMAT

 Examples:
 nm = scale(nmat,'time',2); % scales time axis by a factor of 2
 nm = scale(nmat,'dur',0.5); % shortens durations by a factor of 2

■ CHAPTER 5 – FUNCTION REFERENCE 90

■ MIDI Toolbox ■

segmentgestalt
Function synopsis

Segmentation algorithm by Tenney & Polansky (1980)
Function syntax

[c,s] = segmentgestalt (nmat ,<fig>)
Function comments
 Input arguments:
 NMAT = notematrix
 FIGURE (optional) = if any second argument given,
 a figure is plotted

 Output:
 C = clang boundaries (binary (0|1) column vector)
 S = segment boundaries (binary (0|1) column vector)
 FIG (optionally) = plot pianoroll with dotted lines
 corresponding with clang boundaries.
 Solid line indicates segment boundaries.
 References:
 Tenney, J. & Polansky, L. (1980). Temporal gestalt perception
 in music. Journal of Music Theory, 24(2), 205–41.

See also
segmentprob

segmentprob
Function synopsis

Estimation of segment boundaries
Function syntax

segmentprob(nmat , <thres>,<fig>)
Function comments
 Plots a segmentation of NMAT based on Markov probabilities of
 segment boundaries derived from the Essen collection

 Input arguments:
 NMAT = notematrix
 THRES (optional) = segmentation threshold (default = 0.6);
 FIG (optional) = plot figure (yes=1, no=0, default=0)
 Output:
 SEGM = Segment probabilities for note event (row vector)
 Figure (Optional) showing the pianoroll notation of NMAT in top
 and estimated segment boundaries with respective probabilities
 as a stem plot.

See also
segmentgestalt

91 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

setmidiplayer
Function synopsis

midiplayer = setmidiplayer(<fullpath>)
Function syntax

Define MIDI player program in Windows
Function comments
 midiplayer = setmidiplayer(<fullpath>);

 Input argument:
 FULLPATH (optional) = define the full path of your player

 Remarks: Used by the PLAY function.

 Example : midiplayer = setmidiplayer('C:\Program Files\ ...
 Windows Media Player\mplayer2.exe');

settempo
Function synopsis

Assigns a new tempo to the NMAT in beats per minute (BPM)
Function syntax

y = settempo(nmat,bpm)
Function comments
 Assigns a new tempo to the NMAT.

 Input argument:
 NMAT = notematrix
 BPM = new tempo (in beats per minute)

 Output:
 NMATF = new notematrix

See also
gettempo

setvalues
Function synopsis

Sets the chosen notematrix value for every event

■ CHAPTER 5 – FUNCTION REFERENCE 92

■ MIDI Toolbox ■

Function syntax
nm = setvalues(nmat,dim,val,<timetype>)

Function comments
 Sets the chosen notematrix value for every event

 Input arguments:
 NMAT = notematrix
 DIM = dimension ('onset', 'dur', 'vel', or 'chan')
 VAL = Value
 TIMETYPE = (optional) time representation, 'beat' (default) or 'sec'

 Output:
 NM = notematrix containing the scaled version of NMAT

 Examples:
 nm = setvalues(nmat,'vel',64); % Sets all note velocities to 64
 nm = setvalues(nmat,'onset',0); % Sets all onset times to zero
 nm = setvalues(nmat,'dur',1,'sec'); % Sets all note durations to 1 sec

shift
Function synopsis

Shifting of notematrix values
Function syntax

nm = shift(nmat,dim,amount,<timetype>)
Function comments
 Shifts note data in given dimension (onset time, duration, or pitch)

 Input arguments:
 NMAT = notematrix
 DIM = dimension ('onset', 'dur', 'pitch', 'chan' or 'vel')
 AMOUNT = amount of shift
 TIMETYPE = (optional) time representation, 'beat' (default) or 'sec'

 Output:
 NM = notematrix containing the shifted version of NMAT

 Examples:
 nm = shift(nmat,'onset',5); % shifts note onsets 5 beats ahead
 nm = shift(nmat,'dur',-0.1,'sec'); % shortens durations by 0.1 secs
 nm = shift(nmat,'pitch',12); %transposes one octave up

tessitura
Function synopsis

Tessitura (Hippel, 2000)

93 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function syntax
y = tessitura(nmat)

Function comments
 Calculates the tessitura that is based on standard deviation of pitch height.
 The median range of the melody tends to be favored and thus
 more expected. Tessitura predicts whether listeners expect tones close
 to median pitch height (Hippel, 2000).

 Input argument:
 NMAT = notematrix

 Output:
 Y = tessitura value for each tone in NMAT

 Example: y = tessitura(nmat)

 References:
 von Hippel, P. (2000). Redefining pitch proximity: Tessitura and
 mobility as constraints on melodic interval size. Music Perception,
 17 (3), 315-327.

See also
mobility, narmour

tonality
Function synopsis

Tonal stability of notes in melody
Function syntax

p = tonality(nmat)
Function comments
 Function gives the tonal stability ratings for tones in the melody
 (NMAT) after determining the key mode (minor/major) using the KEYMODE
 function.

 Input argument:
 NMAT = notematrix

 Output:
 P = tonality values for pitches in NMAT

 Remarks: This function calls the KEYMODE function.

 Reference:
 Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch.
 New York: Oxford University Press.

 Example: p = tonality(createnmat)

■ CHAPTER 5 – FUNCTION REFERENCE 94

■ MIDI Toolbox ■

See also
refstat, keymode

transpose2c
Function synopsis

Transposition to C tonic
Function syntax

nmatf = transpose2c(nmat)
Function comments
 Transposes NMAT to C major or minor using the Krumhansl-Kessler
 algorithm. Note that the algorithm may not give reliable results if the
 NMAT is especially short or has a modulating structure.

 Input argument:
 NMAT = notematrix

 Output:
 NMATF = transposed notematrix

 Example: n = transpose2c(nmat);

trim
Function synopsis

Removal of leading silence
Function syntax

nm2 = trim(nmat)
Function comments
 Removes potential silence in the beginning of NMAT
 by shifting the note onsets so that the first onset occur at zero time

 Input arguments:
 NMAT = notematrix

writemidi
Function synopsis

Writes a MIDI file from a NMAT
Function syntax

n = writemidi(nmat, ofname, <tpq>, <tempo>, <tsig1>, <tsig2>)

95 CHAPTER 5 – FUNCTION REFERENCE ■

■ MIDI Toolbox ■

Function comments

 Creates a MIDI file from a NMAT using various optional parameters

 Input arguments: NMAT = notematrix
 OFNAME = Output filename (*.mid)
 TPQ (Optional) = Ticks per quarter note (default 120)
 TEMPO (Optional) = bpm, beats per minute (default 100)
 TSIG1&2 (Optional) = Time-signature, e.g. 6/8 -> TSIG1 = 6,
 TSIG2 = 8 (default 4)

 Output: MIDI file

 Remarks: TEXT2MIDI converter needs to be handled differently in PC and Mac.

 Example: writemidi(a,'demo.mid');
 creates a file name DEMO.MID from notematrix A with
 default settings.

■ CHAPTER 5 – FUNCTION REFERENCE 96

■ MIDI Toolbox ■

Alphabetical Index of Functions

ambitus53
analyzecoll..............................53
analyzedir...............................53
boundary54
combcontour55
complebm55
compltrans56
concur56
createnmat57
dir2coll....................................58
dropmidich.............................58
dropshortnotes.......................58
duraccent................................59
durdist159
durdist260
elim ...60
entropy61
extreme...................................61
filtercoll62
getmidich................................62
gettempo.................................63
gradus.....................................63
hz2midi63
ismonophonic64
ivdist164
ivdist265
ivdirdist165

ivsizedist1 66
keymode................................. 66
keyname................................. 67
keysom 67
keysomanim........................... 68
kkcc .. 69
kkkey...................................... 69
maxkkcc................................. 70
mchannels.............................. 70
melaccent 71
melattraction......................... 71
melcontour............................. 72
meldistance............................ 73
meter 73
meteraccent 74
metrichierarchy 74
midi2hz 75
mobility.................................. 75
movewindow.......................... 76
narmour................................. 76
nmat2snd 77
nnotes..................................... 78
notedensity............................. 78
notename 79
nPVI....................................... 79
onsetacorr.............................. 80
onsetdist 80

onsetwindow 81
pcdist1 81
pcdist2 82
perchannel 82
pianoroll................................. 83
playmidi 83
playsound............................... 84
plotdist 84
plothierarchy 85
plotmelcontour 86
quantize.................................. 86
readmidi................................. 87
refstat 87
reftune.................................... 88
scale .. 89
segmentgestalt 90
segmentprob 90
setmidiplayer 91
settempo 91
setvalues 91
shift... 92
tessitura.................................. 92
tonality 93
transpose2c 94
trim... 94
writemidi................................ 94

	CONTENTS
	CH. 1 INTRODUCTION
	CH. 2 INSTALLATION
	CH. 3 BASIC OPERATIONS
	CH. 4 EXAMPLES
	Ex. 1 Visualizing MIDI Data
	Ex. 2 Melodic Contour
	Ex. 3 Key-Finding
	Ex. 4 Meter-Finding
	Ex. 5 Melodic Segmentation
	Ex. 6 Melodic Expectations
	Ex. 7 Melodic Complexity
	Ex. 8 Analyzing MIDI Collections
	Ex. 9 Melodic Similarity
	Ex. 10 Creating Sequences
	References

	CH. 5 FUNCTION REFERENCE
	ambitus
	analyzecoll
	analyzedir
	boundary
	combcontour
	complebm
	compltrans
	concur
	createnmat
	dir2coll
	dropmidich
	dropshortnotes
	duraccent
	durdist1
	durdist2
	elim
	entropy
	extreme
	filtercoll
	getmidich
	gettempo
	gradus
	hz2midi
	ismonophonic
	ivdist1
	ivdist2
	ivdirdist1
	ivsizedist1
	keymode
	keyname
	keysom
	keysomanim
	kkcc
	kkkey
	maxkkcc
	mchannels
	melaccent
	melattraction
	melcontour
	meldistance
	meter
	meteraccent
	metrichierarchy
	midi2hz
	mobility
	movewindow
	narmour
	nmat2snd
	nnotes
	notedensity
	notename
	nPVI
	onsetacorr
	onsetdist
	onsetwindow
	pcdist1
	pcdist2
	perchannel
	pianoroll
	playmidi
	playsound
	plotdist
	plothierarchy
	plotmelcontour
	quantize
	readmidi
	refstat
	reftune
	scale
	segmentgestalt
	segmentprob
	setmidiplayer
	settempo
	setvalues
	shift
	tessitura
	tonality
	transpose2c
	trim
	writemidi

	Alphabetical Index of Functions

