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CHAPTER 1 – INTRODUCTION  
MIDI Toolbox provides a set of Matlab functions, which together have all the 
necessary machinery to analyze and visualize MIDI data. The development of the 
Toolbox has been part of ongoing research involved in topics relating to musical data-
mining, modelling music perception and decomposing the data for and from 
perceptual experiments. Although MIDI data is not necessarily a good representation 
of music in general, it suffices for many research questions dealing with concepts 
such as melodic contour, tonality and pulse finding. These concepts are intriguing 
from the point of view of music perception and the chosen representation greatly 
affects the way these issues can be approached. MIDI is not able to handle the timbre 
of music and therefore it unsuitable representation for a number of research questions 
(for summary, see Hewlett and Selfridge-Field, 1993-94, p. 11-28). All musical 
signals may be processed from acoustic representation and there are suitable tools 
available for these purposes (e.g. IPEM toolbox, Leman et al., 2000). However, there 
is a body of essential questions of music cognition that benefit from a MIDI-based 
approach. MIDI does not contain notational information, such as phrase and bar 
markings, and neither is that information conveyed in explicit terms to the ears of 
music listeners. Consequently, models of music cognition must infer these musical 
cues from the pitch, timing and velocity information that MIDI provides. Another 
advantage of the MIDI format is that it is extremely wide-spread among the research 
community as well as having a wider group of users amongst the music professionals, 
artists and amateur musicians. MIDI is a common file format between many notation, 
sequencing and performance programs across a variety of operating systems. 
Numerous pieces of hardware exist that collect data from musical performances, 
either directly from the instrument (e.g. digital pianos and other MIDI instruments) or 
from the movements of the artists (e.g. motion tracking of musician’s gestures, hand 
movements etc.). The vast majority of this technology is based on MIDI 
representation. However, the analysis of the MIDI data is often developed from 
scratch for each research question. The aim of MIDI Toolbox is to provide the core 
representation and functions that are needed most often. These basic tools are 
designed to be modular to allow easy further development and tailoring for specific 
analysis needs. Another aim is to facilitate efficient use and to lower the “threshold of 
practicalities”. For example, the Toolbox can be used as teaching aid in music 
cognition courses. 
 
This documentation provides a description of the Toolbox (Chapter 1), installation 
and system requirements (Chapter 2). Basic issues are explained in Chapter 3. Chapter 
4 demonstrates the Toolbox functions using various examples. The User’s Guide does 
not describe any of the underlying theories in detail. Chapter 5 focuses on a collection 
format and Chapter 6 is the reference section, describing all functions in the Toolbox. 
The online reference documentation provides direct hypertext links to specific 
Toolbox functions. This is available at http://www.jyu.fi/musica/miditoolbox/ 
 

http://www.jyu.fi/musica/miditoolbox/
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This User’s Guide assumes that the readers are familiar with Matlab. At the moment, 
the MIDI Toolbox is a collection of Matlab functions that do not require any extra 
toolboxes to run. Signal processing and Statistics toolboxes – both available 
separately from Mathworks – offer useful extra tools for the analysis of perceptual 
experiments. 
  
MIDI Toolbox comes with no warranty. This is free software, and you are welcome to 
redistribute it under certain conditions. See License.txt for details of GNU 
General Public License. 
 
We would like to thank various people contributing to the toolbox. The conversion to 
and from MIDI file is based on the C source code by Piet van Oostrum, which, in 
turn, uses the midifile library written by Tim Thompson and updated by Michael 
Czeiszperger. Brian Cameron found out some sneaky bugs in the aforementioned C 
source code. Micah Bregman helped to check parts of the manual and wrote out some 
new functions. 

Comments, suggestions or questions? 
Many functions are still not completely tested in MIDI Toolbox version 1.0. Check 
the online forum for corrections and revisions: 
http://www.jyu.fi/musica/miditoolbox/forum.html 
 
Alternatively, you can report any bugs or problems to: 
 
Tuomas Eerola, Petri Toiviainen 
{ptee, ptoiviai}@cc.jyu.fi 
 
Department of Music 
University of Jyväskylä 
P.O. BOX 35 
40014 University of Jyväskylä 
Finland

http://www.jyu.fi/musica/miditoolbox/forum.html
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CHAPTER 2 – INSTALLATION 
Availability 
The whole toolbox is available either as a zipped package from the internet 
(http://www.jyu.fi/musica/miditoolbox/). 

 
Installation 
Unpack the MIDI Toolbox file package you have downloaded. For this, use a program 
like Winzip for Windows and Stuffit Expander for Macintosh. This will create a 
directory called miditoolbox. Secondly, a version of the Matlab program needs to be 
installed (see www.mathworks.com). Thirdly, the Toolbox needs to be defined in 
the Matlab path variable.  

 
Windows (98, 2000, XP) 
The MIDI Toolbox version 1.0 is compatible with Matlab 5.3 and Matlab 6.5.  
 

Macintosh (OS X) 
The MIDI Toolbox version 1.0 is compatible with Matlab 6.5 for Macintosh.  

Linux 
Currently not tested but should be compatible. 

http://www.jyu.fi/musica/miditoolbox/
http://www.mathworks.com
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CHAPTER 3 – BASIC OPERATIONS 
 
 

Basic issues 
In this tutorial, we assume that the reader has basic knowledge of the Matlab 
command syntax. Many good tutorials exist in the Internet, see: 
 http://www.math.ufl.edu/help/matlab-tutorial/  
 http://www.math.mtu.edu/~msgocken/intro/intro.html 
 http://www.helsinki.fi/~mjlaine/matlab/index.html (in Finnish) 
 http://www.csc.fi/oppaat/matlab/matlabohje.pdf (in Finnish) 
 
 
In the following examples, the commands that are typed to Matlab command prompt 
are written in monospaced font and are preceded by the » sign. Help is also 
available within the Matlab session. For example, to understand what a particular 
function does, type help and the name of the function at the command prompt. For 
example, to obtain information about how the pitch-class distribution function works, 
type: 
 
 » help pcdist1 
 
To see a list of all available functions in the Toolbox, type: 
 
 » help miditoolbox 
 

Reading MIDI files into Matlab 
The basic functions in MIDI Toolbox read and manipulate type 0 and type 1 MIDI 
files. The following command reads and parses a MIDI file called laksin.mid and 
stores it as a matrix of notes called nmat in Matlab’s workspace: 
 
 » nmat = readmidi('laksin.mid'); 
 
This particular MIDI file contains the first two verses of a Finnish Folk song called 
"Läksin minä kesäyönä" (trad.). 
 
 

Basic terms 
Notematrix (or nmat) refers to a matrix representation of note events in a MIDI file. 
We can now type nmat and see what the notematrix of the folk song looks like. 
 

http://www.math.ufl.edu/help/matlab-tutorial/
http://www.math.mtu.edu/~msgocken/intro/intro.html
http://www.helsinki.fi/~mjlaine/matlab/index.html
http://www.csc.fi/oppaat/matlab/matlabohje.pdf
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 » nmat 
 
 
nmat = 
0        0.9000   1.0000   64.0000   82.0000   0        0.5510 
1.0000   0.9000   1.0000   71.0000   89.0000   0.6122   0.5510 
2.0000   0.4500   1.0000   71.0000   82.0000   1.2245   0.2755 
2.5000   0.4500   1.0000   69.0000   70.0000   1.5306   0.2755 
3.0000   0.4528   1.0000   67.0000   72.0000   1.8367   0.2772 
3.5000   0.4528   1.0000   66.0000   72.0000   2.1429   0.2772 
4.0000   0.9000   1.0000   64.0000   70.0000   2.4490   0.5510 
5.0000   0.9000   1.0000   66.0000   79.0000   3.0612   0.5510 
6.0000   0.9000   1.0000   67.0000   85.0000   3.6735   0.5510 
7.0000   1.7500   1.0000   66.0000   72.0000   4.2857   1.0714 
 
We see that the variable nmat contains a 7 x 10 matrix filled with numbers. The 
columns refer to various types of information such as MIDI pitch and MIDI channel. 
The rows stand for the individual note events (in this case, the melody has 10 notes 
and each of them is described in terms pitch, onset time, duration, volume and so 
forth). The labels of the columns are as follows: 
 
 ONSET   DURATION  MIDI     MIDI     VELOCITY  ONSET  DURATION 
(BEATS)  (BEATS)  channel   PITCH              (SEC)   (SEC) 
 
The first column indicates the onset of the notes in beats (based on ticks per quarter 
note) and the second column the duration of the notes in these same beat-values. The 
third column denotes the MIDI channel (1-16), and the fourth the MIDI pitch, where 
middle C (C4) is 60. The fifth column is the velocity describing how fast the key of 
the note is pressed, in other words, how loud the note is played (0-127). The last two 
columns correspond to the first two (onset in beats, duration in beats) except that 
seconds are used instead of beats. 
 
Often one wants to refer only to pitch or duration values in the notematrix. For clarity 
and convenience, these columns may be called by few basic selector functions that 
refer to each specific column only. These are onset (either 'beat' or 'sec', the 
former is the default), dur (either 'beat' or 'sec'), channel, pitch, 
and velocity. For example, pitch(nmat) returns only the MIDI notes values of 
the notematrix and onset(nmat) returns only the onset times (in beats) of the events 
in the notematrix.  

Collection format 
Large corpora of music are more convenient to process in Matlab if they are stored in 
Matlab’s own cell structures rather than keeping them as MIDI files that are loaded 
separately for the analysis. You can store multiple notematrices in cell structures from 
a directory of MIDI files by using dir2cellmatr function. The function processes 
all MIDI files in the current directory and stores the notematrices and the filenames in 
the variables of your choice: 
 
 » [demo_collection,filenames] = dir2cellmatr; 
 
After creating cell matrix structure of the MIDI files, individual notematrices can be 
called by the following convention: 
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 » tune1 = demo_collection{1}; 
 
With large collections of MIDI files applying the analyzecoll function to a cell 
structure is preferred to analyzing the MIDI files separately (by using the 
analyzedir function). This is because in the former case the files need not be 
converted into Matlab format, which increases the speed of the analysis greatly. 
Example 8 in Chapter 4 illuminates the use of the collection format. 

Future changes to the notematrix representation 
MIDI files often contain a wealth of other information than the one pertaining to note 
events. Tick type information, tempo, key signature, meter signature, copyright notes, 
lyrics, track names, various types of controller data and changes in these across time 
are commonly included in MIDI files. Some of these details would be useful for 
certain types of analyses. However, at this stage only hold pedal information is 
retained in the conversion from MIDI file to notematrix. In the next version of the 
Toolbox, we are considering storing these details in the Matlab Field Structures. The 
drawback of this improvement is that it will also change way the existing functions 
are called. In future version we are also planning to include a graphical user interface 
for common operations and analyses. 

Combining functions 
Functions in Matlab can be combined: 
 
 » plotdist(pcdist1(nmat)) 
 
In the example, function pcdist1 calculates the pitch-class distribution of the 
notematrix nmat and then uses the command plotdist to create a labeled bar 
graph of the distribution.  

Saving variables 
Variables in Matlab can be saved using the command save filename. This 
command saves all variables in Matlab session to a Matlab matrix file (filename.mat) 
on the hard disk. It is often useful to use the clear command to purge unnecessary 
variables from the Matlab session before saving the variables. 

Saving MIDI files 
A notematrix can be converted into a MIDI file by using the writemidi command. 
The syntax of the command is: 
 
 writemidi(nmat,ofname,<tpq>,<tempo>,<tsig1>,<tsig2>) 
 
In the command syntax, nmat refers to the notematrix, ofname to the name of the 
generated MIDI file. There are some other parameters that are optional (denoted by 
the brackets). For example, you have created a new notematrix called probemelody 
that contains a sequence from the probe-tone experiments and want to save the 
sequence into a MIDI file named probemelody.mid. The following command writes 
the MIDI file with a tempo of 90 beats per minute. 
 
 » writemidi(probemelody,'probemelody.mid',120, 90); 
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Playing notematrices 
There are two methods of listening to the contents of a notematrix. The first method 
involves playing the MIDI file created by nmat2mf command using the internal MIDI 
player of the operating system (such as Quicktime, Mediaplayer or Winamp). This 
method uses the following command: 
 
 » playmidi(nmat) 
 
This function is dependent on the operating system. In Windows, use 
definemidiplayer function and choose a midi player of your choice by browsing 
and selecting the correct executable from your hard disk (Media Player, Winamp, etc). 
This function writes the path and the filename down to midiplayer.txt in MIDI 
Toolbox directory for future use. In MacOS X, the path is already predefined in the 
abovementioned files. 
 
The second method is to synthesize the notematrix into waveform using nmat2snd 
function. This is computationally more demanding, especially if the notematrix is 
large. Matlab can render these results into audible form by using sound or soundsc 
function or alternatively the waveform may be written into a file using wavwrite 
function. Simple way to hear the notematrix is type:  
 
 » playsound(nmat); 
 

Referring to parts of a notematrix 
Often one wants to select only a certain part of a notematrix for analysis. For example, 
instead of analyzing the whole MIDI sequence, you may wish to examine the first 8 
bars or select only MIDI events in a certain MIDI channel. Basic selection is 
accomplished using Matlab’s own index system, for example: 
 
 » first_12_notes = laksin(1:12,:); 
 
It is also possible to refer to MIDI Toolbox definitions and functions when selecting 
parts of the notematrix. The following examples give a few ideas of how these may be 
used. Many of these functions belong to the filter category (see Chapter 6). 
 
 » first_4_secs = onsetwindow(laksin,0,4,'sec'); 
 
 » first_meas = onsetwindow(laksin,0,3,'beat'); 
 
  » between_1_and_2_sec = onsetwindow(laksin,1,2,'sec'); 
 
 » only_in_channel1 = getmidich(laksin,1); 
 
 » remove_channel10 = dropmidich(laksin,10); 
 
 » no_short_notes = dropshortnotes(laksin,'sec',0.3) 

Manipulating note matrices 
Often one wants to find and manipulate the tempo of a notematrix. Here’s an example 
of how the tempo is obtained and then set to a faster rate. 
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 » tempo = gettempo(laksin) 
 » tempo = 98.000 
 » laksin_128bpm = settempo(laksin,128); 
 
To scale any values in the notematrix, use scale command: 
 
 » laksin_with_halved_durations = scale(laksin,'dur',0.5); 
 
One can assign any parameter (channel, duration, onset, velocity, pitch) in the 
notematrix a certain fixed value. For instance, to set all note velocities to 64, 
setvalues command may be used: 
 
 » laksin_velocity64 = setvalues(laksin,'vel',64); 
 
Transposing the MIDI file is also a useful operation. This example transposes the folk 
tune Läksin a major third down (minus four semitones). 
 
 » laksin_in_c = shift(laksin,'pitch',-4); 
 
Transposition can also be done to a velocity or channel information of the notematrix. 
Here’s an example of channel alteration. 
 
 » laksin_channel2 = shift(laksin,'chan',1); 
 
If you do not know the key of the MIDI file and wish to transpose the file to a C 
major or C minor key, it can be performed using the transpose2c function. This 
method draws on a built-in key-finding algorithm, which is described later. 
 
 » laksin_in_c = transpose2c(laksin); 
 
It is also possible to combine different notematrices using Matlab’s regular command 
syntax. To create Finnish folk tune Läksin in parallel thirds, use: 
 
 » laksin_parallel_thirds = [laksin; laksin_in_c]; 
 
Sometimes a notematrix might need to be quantized. This is relatively easy to carry 
out using quantize function. In this example, a Bach prelude is quantized using 
sixteenth beat resolution. The first argument quantizes the onsets, the second 
argument the durations and the third argument filters out notes that are shorter than 
the criteria (sixteenth notes in this case): 
 
 » prelude_edited = quantize(prelude, 1/16,1/16,1/16); 
 
In many cases one wishes to eliminate certain aspects of the notematrix. For example, 
a simple way to get the upper line of the polyphonic notematrix is to use extreme 
function: 
 
 » prelude_edited = extreme(prelude_edited,'high'); 
 
Also, leading silence in notematrix is something that often is unnecessary. This can be 
removed using the trim function: 
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 » prelude_edited = trim(prelude_edited); 
 

Demonstrations 
Demonstrations, which are loosely based on the examples described in the next 
chapter, are available in the MIDI Toolbox directory. Type in  mididemo to go 
through the demos. 
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CHAPTER 4 – EXAMPLES 
Example 1: Visualizing MIDI Data 

The pianoroll function displays conventional pianoroll notation as it is available in 
sequencers. The function has the following syntax: 
 
pianoroll(nmat,<varargin>); 
 
The first argument refers to the notematrix and other arguments are optional. Possible 
arguments refer to axis labels (either MIDI note numbers or note names for Y-axis 
and either beats or seconds for the X-axis), colors or other options. For example, the 
following command outputs the pitch and velocity information: 
 
 » pianoroll(laksin,'name','sec','vel'); 

Figure 1: Pianoroll notation of the two first phrases of Läksin minä kesäyönä. The lower panel 
shows the velocity information. 

 
Figure 2. Notation of first two verses of the Finnish Folk tune "Läksin minä kesäyönä". 
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Pianoroll output is rather straightforward to interpret. If you compare it with notation 
of the same song (Figure 2), you can easily see the differences and similarities 
between pianoroll and traditional notation. 
 
Polyphonic and more elaborate MIDI files can also be visualised using pianoroll 
notation. Also, the time axis can be set to display beats rather than seconds and the 
pitch height axis can be set to show MIDI pitch numbers. For example, to plot first 
five measures (i.e., 5 * 4 beats per measure = 20 beats) of the Bach’s C-major 
Prelude: 
 
 » prelude = readmidi('wtcii01a.mid'); 
 » prelude5 = onsetwindow(prelude,0,20,'beat'); 
 » pianoroll(prelude5,'num','beat'); 

Figure 3. First five measures of Bach's C-major Prelude from Wohltemperierte Klavier II 
(BWV 870). 

In Figure 3, the horizontal lines indicate Cs and the vertical dotted lines correspond to 
onset beats, which in this case have their equivalent in the notation (four beats per 
measure). The notation of the C-major Prelude is shown in Figure 13. Furthermore, 
MIDI files with several channels may be plotted with pianoroll function, which 
highlights the channels by using different colors. 
 

Visualization of distributions 
In this example, we have loaded the third movement (Sarabande) from J. S. Bach’s 
Partita in A minor for Solo Flute (BWV 1013) into a notematrix called sarabande 
(see Figure 4). 
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Figure 4. Bach's Flute Sarabande (BWV 1013). 

First, we can examine the note distribution of the Sarabande in order to see whether 
the key signature is apparent from the distribution of the pitch-classes. The following 
command creates a bar chart of the pitch-class distribution of the Sarabande. 
 
 » plotdist(pcdist1(sarabande)); 

Figure 5. Pitch-class distribution in Bach's Flute Sarabande (BWV 1013). 
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The inner function, pcdist1, calculates the proportion of each pitch-class in the 
sequence, and the outer function, plotdist, creates the labeled graph. From the 
resulting graph, shown in Figure 5, we can infer that the Sarabande is indeed in A 
minor key as A, C and E are the most commonly used tones. More about inferring the 
key in a separate section on key-finding (Example 3). 
 
Another basic description of musical content is the interval structure. In monophonic 
music this is easily compiled, as shown below, but detecting successive intervals in 
polyphonic music is a difficult perceptual task and will not be covered here. To see 
what kind of intervals are most common in the Sarabande, type: 
 
 » plotdist(ivdist1(sarabande)); 

Figure 6. Interval distribution in Bach's Flute Sarabande (BWV 1013). 

 
In the middle, P1 stands for unison (perfect first), i.e. note repetitions, which are fairly 
rare in this work (P8 stands for perfect octave, m3 is the minor third, M3 is a major 
third and so on). Let us compare the distribution of interval sizes and direction to the 
results obtained from analysis of large musical corpora by Vos and Troost (1989). To 
obtain suitable distributions of Sarabande, we use function ivdirdist1 and 
ivsizedist1 (see Figure 7). 
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Figure 7. The top left panel shows the distribution of interval sizes in Sarabande and the 
lower left panels displays the theoretical frequency of occurrence of intervals according to 
Dowling and Harwood (1986). The top right panels shows the proportion of the ascending 
intervals and the lower right panel displays the same data in collection of folk music (N=327), 
compiled by Vos and Troost (1989).  

 
We see in Figure 7 that in the corpus analyzed by Vos and Troost (1989) the interval 
structure is usually asymmetric (lower right panel). This means that large intervals 
tend to ascend whereas small intervals tend to descend. This is not evident in 
Sarabande (panels on the right) as the fifths tend to descend rather than ascend. 
 
Displaying the distributions of two-tone continuations in Sarabande is similar to 
displaying tone distributions: 
 
  » plotdist(pcdist2(sarabande)); 

 

 

 

 

 

Distributions in Sarabande 

Theoretical distribution Distribution in folk music 
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Figure 8. The proportion of two-note continuations in Bach's Flute Sarabande (BWV 1013). 
The colorbar at the right displays the proportion associated with each colour. 

 
Figure 8 shows the proportion of tone transitions in Sarabande. The most common 
transition is from dominant (E) to D and next most common transition is the F to 
dominant E. Commonly, the diagonal of the tone transition matrix shows high 
proportion of occurrences but this work clearly avoids unisons. The few unisons 
shown in the transition matrix are due to octave displacement. Note that these 
statistics are different from the interval distributions. It is also possible to view a 
distribution of note durations in a similar manner (functions durdist1 and 
durdist2). 
 
In Matlab, there are further visualization techniques that can be used to display the 
distributions. Quite often, plotting the data using different colors is especially 
informative. In some cases, three-dimensional plots can aid the interpretation of the 
data (see Example 7 for a three-dimensional version of note transitions.). 
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Example 2: Melodic Contour 

Melodic contour describes the overall shape of the melody. The contour 
representation of a melody is usually easier to remember than exact interval 
information (Dowling, 1978; Dowling & Fujitani, 1971) and numerous music 
informational retrieval systems use contour to find specific melodies from large music 
databases (e.g., Kim et al., 2000; Lemström et al., 2001). Contour is also central in 
explorations of “melodic arches”, which describe the typical contours found in the 
phrases of Western folk songs (Huron, 1996). 
 
Figure 9 below shows two versions of melodic contour using different degrees of 
resolution. The degree of resolution depends upon the value of the sampling step, 
expressed in MIDI beats. The larger the resolution, the more coarse the contour. The 
dashed line represents a detailed contour with the resolution STEP 0.25. This high 
level of detail is not often necessary in dealing with melodic contour. The solid line 
represents a coarser melodic contour that might be more useful for finding out the 
overall structure of the melody. 
 
 » plotmelcontour(laksin,0.25,'abs',':r.'); hold on 
 » plotmelcontour(laksin,1,'abs','-bo'); hold off 
 » legend(['resolution in beats=.25'; ... 
 » 'resolution in beats=1.0']); 

 

Figure 9. Melodic contour and notation of "Läksin minä kesäyönä". 

One application of the melodic contour is finding out whether the sequence contains 
repeated melodic phrases. This can be done using an autocorrelation technique 
(Eerola et al., submitted). The autocorrelation function of a time series is obtained by 
correlating the series with a delayed copy of itself, using delay values ranging from –L 
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to +L, where L denotes the total length of the time series. A time series is 
autocorrelated if it is possible to predict its value at a given point of time by knowing 
its value at other points of time. Positive autocorrelation means that points at a certain 
distance away from each other have similar values (Box, Jenkins & Reinsel, 1994). 
 
 » l = reftune('laksin'); 
 » c = melcontouracorr(l); 
 » t = [-(length(c)-1)/2:1:(length(c)-1)/2]*.1; 
 » plot(t,c,'k');md = round(max(onset(l))+ dur(l(end,:))); 
 » axis([-md md -0.4 1]); xlabel('\bfLag (in beats)') 
 » set(gca,'XTick',-md:2:md); ylabel('\bfCorr. coeff.') 
 

Figure 10. A plot of autocorrelation across melodic contour of "Läksin minä kesäyönä". 

 
Figure 10 shows the autocorrelation function of the contour of Läksin mina kesäyönä. 
At the middle of the figure (at the peak, lag 0 beats) the autocorrelation function gives 
the result of 1.0, perfect correlation, because at this point the melodic contour is 
compared with itself. The autocorrelation function is always symmetric with respect 
to the point corresponding to zero lag. Therefore, only the right halve needs to be 
regarded to estimate the degree of self-similarity. The shaded area shows the self-
similarity of the melodic contour; only the positive correlations of the autocorrelation 
function (half-wave rectification) are observed. This relevant, right portion of the 
autocorrelation function may be plotted using the 'ac' parameter in melcontour 
command: 
 
 » plotmelcontour(l,0.5,'abs','b','ac'); 
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Figure 11. Self-similarity of melodic contour of Läksin minä kesäyönä. 
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Example 3: Key-Finding 

The classic Krumhansl & Schmuckler key-finding algorithm (Krumhansl, 1990), is 
based on key profiles obtained from empirical work by Krumhansl & Kessler (1982). 
The key profiles were obtained in a series of experiments, where listeners heard a 
context sequence, consisting of an incomplete major or minor scale or a chord 
cadence, followed by each of the chromatic scale pitches in separate trials. (See 
Example 9 for instructions on creating the probe-tone stimuli using the Toolbox). 
Figure 12 shows the averaged data from all keys and contexts, called C major and C 
minor key profiles. 
 

Figure 12. Probe-tone ratings for the keys of C major and C minor (Krumhansl & Kessler, 
1982). 

 
In the K-S key-finding algorithm, the 24 individual key profiles, 12 major and 12 
minor key profiles, are correlated with the pitch-class distribution of the piece 
weighted according to their duration. This gives a measure of the strength of each key. 
Let us take the C major Prelude in J. S. Bach's Wohltemperierte Klavier II (BWV 
870). The first page of this Prelude is shown in Figure 13 . 
 
We load this file into a variable called prelude and take only the first 10 measures 
(first page in Figure 13) of it to find a likely key area: 
 
 » prelude10=onsetwindow(prelude,0,40); 
 » keyname(kkkey(prelude10)) 
 » ans = 'C' 
 
The inner function in the second command line (kkkey) performs the K-S key-
finding algorithm and the outer function changes the numerical output of the inner 
function to a letter denoting the key. Not surprisingly, the highest correlation of the 
note distribution in the first 10 measures of the Prelude is obtained with the C major 
key profile. A closer look at the other candidates the algorithm offers reveals the 
strength of all keys: 
 
 » keystrengths = kkcc(prelude10); % corr. to all keys 
 » plotdist(keystrengths); % plot all corr. coefficients 
 
Figure 15 displays the correlation coefficient to all 24 key profiles. According to the 
figure, G major and a minor keys are also high candidates for the most likely key. 
This is not surprising considering that these are dominant and parallel minor keys to C 
major. 
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Figure 13. First page of Bach's C major Prelude from Wohltemperierte Klavier II (BWV 870). 
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Figure 14. Correlation coefficients of the pitch-class distribution in Bach's C-major prelude to 
all 24 key profiles. 

Another way of exploring key-finding is to look at how tonality changes over time. In 
the technique, key-finding is performed within a small window that runs across the 
length of the music. This operation uses the movewindow function. Below is an 
example of finding the maximal key correlation using a 4-beat window that is moved 
by 2 beats at a time. 
 
 » prelude4=onsetwindow(prelude,0,16,'beat'); 
 » keys = movewindow(prelude4,4,2,'beat','maxkkcc'); 
 » label=keyname(movewindow(prelude4,4,2,'beat','kkkey')); 
 » time=0:2:16; plot(time,keys,':ko','LineWidth',1.25); 
 » axis([-0.2 16.2 .4 1]) 
 » for i=1:length(label) 
 »  text(time(i),keys(i)+.025,label(i),... 
  »  'HorizontalAlignment','center','FontSize',12); 
 » end 
 » ylabel('\bfMax. key corr. coeff.');  
 » xlabel('\bfTime (beats)') 

Figure 15. Maximum key correlation coefficients across time in the beginning of the C-major 
Prelude. 

Figure 15 displays the key changes over time, showing the movement towards the F 
major (meas. 4) and further to G major (meas. 6). Although the measure shows the 
strength of the key correlation, it gives a rather simplistic view of the tonality as the 
dispersion of the key center between the alternate local keys is not shown. A recent 
dynamic model of tonality induction (Toiviainen & Krumhansl, 2003) calculates local 
tonality based on key profiles. The results may be projected onto a self-organizing 
map (SOM) trained with the 24 key profiles. In the following example, the function 
calculates the key strengths and creates the projection. The second argument in the 
syntax example defines the colorbar and the third the color. 
 
 » keysom(prelude10,1); % create a color figure 
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Figure 16. Self-organizing map (SOM) of the tonality in Bach’s C-major Prelude. 

The map underlying the tonal strengths in Figure 16 is toroid in shape, which means 
that the opposite edges are attached to each other. The local tonality is the strongest in 
the area between a minor and C major. This visualization of tonality can be used to 
show the fluctuations of the key center and key strength over time. Below is an 
example of this using a 4-beat window that steps 2 beats forward each time. 
 
 » keysomanim(prelude4,4,2); % show animation in Matlab 
 » keysomanim(prelude4,4,2,'beat','strip'); % show strips 
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Figure 17. First four measures (two frames per measure) of the tonality animation in Bach's 
Prelude. 

Figure 17 displays the tonality of the first four measures of the Prelude. From the 
separate figures one can see how the tonal center is first firmly in C major and then it 
moves towards other regions, F, e, etc. 
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Figure 18. First four measures of the Bach's Prelude corresponding to the tonality animation 
of Figure 17. 

Another option in keysomanim function allows to save the animation as a Matlab 
movie ('movie'). The saved movie can be played back by movie command or 
written to a file using avifile command. When playing back the movie, be sure to 
synchronize the animations using equivalent frame rate in order to retain the timing 
information. For example, to create an animation using 5 frames per second (fps), the 
following syntax may be used: 
 
 » m=keysomanim(prelude4,2,.2,'sec','movie'); % 5 fps 
 » movie(m,1,5); % last arg. = frames per second (fps)  
 
Matlab movies use extensive amounts of memory. Therefore, with long musical 
sequences it is recommended to use the 'frames' option and combine the frames 
afterwards with a video editing software (such as Adobe Premiere). At the moment, 
the sound cannot be easily included in the animation file without using an external 
utility. 
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Example 4: Meter-Finding 

One way of visualizing the possible meter of a notematrix is to display its note onset 
distribution in terms of the beat structure. This can be accomplished using the 
onsetdist function. Let us plot the onset distribution of the Bach’s Prelude 
assuming a four-beat measure: 
 
 » onsetdist(prelude,4,'fig'); 
 
In this function, the second parameter refers to the assumed number of beats per 
measure. The onsets are weighted by the durations of tones because the longer the 
tone is, the more salient and prominent it is for the listener (Thompson, 1994). 

Figure 19. Distribution of note onsets in Fugue. 

 
Figure 19 shows that the Prelude is clear in terms of the note onset distribution across 
a measure. Most onsets occur at the first beat of the measure, at the most important 
location according to metrical hierarchy. This onset distribution is similar to that one 
commonly found in music, for example, in the works of Bach, Mozart, Brahms, and 
Shostakovich (Palmer & Krumhansl, 1990). Behavioral experiments conducted by 
Palmer and Krumhansl (1990) have also demonstrated that a similar hierarchical grid 
may reside in the minds of Western listeners. 
 
Inferring the meter is a challenge that involves finding a regular beat structure from 
the notematrix. One technique is to use the autocorrelation function and to seek peaks 
from the onset structure corresponding to simple duple (2/4, 2/8, 2/2, 4/4) or simple 
triple meter (3/4, 3/2). This technique resembles the method used by Brown (1993) to 
estimate meter. Toiviainen and Eerola (2004) tested the effectiveness of the method in 
classifying the meters into duple or triple using two large collections of melodies 
(Essen collection and Finnish Folk Tunes, N = 12368). With only durational accents, 
the correct classification rate was around 80%. This method is available as the meter 
function in the Toolbox: 
 
 » bestmeter = meter(laksin) 
 bestmeter = 3 
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This indicates the most probable meter is simple triple (probably 3/4). When melodic 
accent is incorporated into the inference of meter, the correct classification of meter is 
higher (up to 93% of the Essen collection and 95% of Finnish folk songs were 
correctly classified in Toiviainen & Eerola, 2004). This optimized function is 
available in toolbox using the 'optimal' parameter in meter function, although the 
scope of that function is limited to monophonic melodies. 
 
Detecting compound meters (6/8, 9/8, 6/4) presents another challenge for meter-
finding that will not be covered here. A plot of autocorrelation results – obtained by 
using onsetacorr function – provides a closer look of how the meter is inferred 
(Figure 20). In the function, second parameter refers to divisions per quarter note. 
 
 » onsetacorr(laksin,4,'fig'); 

Figure 20. Autocorrelation function of onset times in Läksin Minä Kesäyönä. 
 
Figure 20 shows that the zero time lag receives perfect correlation as the onset 
distribution is correlated with itself. Time lags at 1-8 quarter notes are stronger than 
the time lags at other positions. Also, there is a difference between the correlations for 
the time lag 2, 3 and 4. The lag of 3 beats (marked with A) is higher (although only 
slightly) than the lags 2 and 4 beats and therefore it is plausible that the meter is 
simple triple. 
 
Even if we now know the likely meter we cannot be sure the first event or events in 
the notematrix are not pick-up beats. In this dilemma, it is useful to look at the 
metrical hierarchy, which stems from the work by Lerdahl and Jackendoff (1983). 
They described the rhythmic structure of Western music as consisting of alteration of 
weak and strong beats, which are organized in a hierarchical manner. The positions in 
the highest level of this hierarchy correspond to the first beat of the measure and are 
assigned highest values, the second highest level to the middle of the measure and so 
on, depending on meter. It is possible to examine the metrical hierarchy of events in a 
notematrix by making use of the meter-finding algorithm and finding the best fit 
between cyclical permutations of the onset distribution and Lerdahl and Jackendoff 
metrical hierarchies, shown below: 
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 » plothierarchy(laksin,'sec'); 
 
The dots in Figure 20 represent the metrical hierarchy. High stacks of dots (connected 
with a stem) correspond to events with high metrical hierarchy. In this melody, three 
levels are in use. The meter-finding algorithm infers the meter of the tune correctly 
(3/4), but the algorithm assumes that the first note is a pick-up note. This probably 
happens because of the metrical stress caused by the long notes in the second beats in 
measures three and six. A listener unfamiliar with the song could easily form this 
interpretation of meter. 
 
 

Figure 21. Notation of Läksin minä kesäyönä (upper panel) and the inferred metrical 
hierarchy for the events (lower panel). 
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Example 5: Melodic Segmentation 

One of the fundamental processes in perceiving music is the segmentation of the 
auditory stream into smaller units, melodic phrases, motifs and such issues. Various 
computational approaches to segmentation have been taken. With symbolic 
representations of music, we can distinguish rule-based and statistical (or memory-
based) approaches. An example of the first category is the algorithm by Tenney and 
Polansky (1980), which finds the locations where the changes in “clangs” occur. 
These clangs correspond to large pitch intervals and large inter-onset-intervals (IOIs). 
This idea is partly based on Gestalt psychology. For example, this algorithm segments 
Läksin in the following way: 
 
 » segmentgestalt(laksin,'fig');  

Figure 22. Segmented version of Läksin minä kesäyönä. The dotted line indicates clang 
boundaries and the black line indicates the segment boundary, both the result of the Gestalt-
based algorithm (Tenney & Polansky, 1980). 

Another segmentation technique uses the probabilities derived from the analysis of 
melodies (e.g., Bod, 2002). In this technique, demonstrated in Figure 22, the 
probabilities of phrase boundaries have been derived from pitch-class-, interval- and 
duration distributions at the segment boundaries in the Essen folk song collection. 
 
 » segmentprob(laksin,.6,'fig'); 
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Figure 23. Segmentation based on the probabilities of tone, interval, and duration distributions 
at segment boundaries in the Essen collection. The middle panel shows the probabilities of 
segment boundaries by the algorithm. The tune contains the two first phrases of Läksin minä 
kesäyönä. 

Both segmentation algorithms produce plausible divisions of the example tune 
although the correct segmentation is more in line with Tenney & Polansky’s model. 
Finally, a Local Boundary Detection Model by Cambouropoulos (1997) is a recent 
variant of the rule-based model that offers effective segmentation of monophonic 
input. 
 » boundary(laksin,'fig'); 

Figure 24. Segmentation of Läksin minä kesäyönä based on Local Boundary Detection Model 
(Camporopoulos, 1997) 
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Example 6: Melodic Expectations 

Recent work on melodic expectancy has shown how music draws on common 
psychological principles of expectation that have been captured in Narmour’s (1990) 
cognitively oriented music-theoretic model. The model draws on the Gestalt-based 
principles of proximity, similarity, and good continuation and has been found to 
predict listeners’ melodic expectancies fairly well (Krumhansl, 1995a, b). The model 
operates by looking at implicative intervals and realized intervals. The former creates 
implications for the melody's continuation and the next interval carries out its 
implications (Figure 25).  

Figure 25. An example implicative and realized interval. 

The model contains five principles (Registral Direction, Intervallic Difference, 
Registral Return, Proximity, and Closure) that are each characterized by a specific 
rule describing the registral direction and the distance in pitch between successive 
tones. The principle of Registral Return, for example, refers to cases in which the 
second tone of the realized interval is within two semitones of the first tone of the 
implicative interval. According to the theory, listeners expect skips to return to 
proximate pitch. The combinations of implicative intervals and realized intervals that 
satisfy this principle are shown by the shaded area at the Figure 26. 

Figure 26. Demonstration of Registral Return in Narmour’s implication-realization model. 
The vertical axis corresponds to the implicative interval ranging from 0 to 11 semitones. The 
horizontal axis corresponds to the realized interval, ranging from 12 semitones in the opposite 
direction of the implicative interval to 12 semitones in the same direction of the implicative 
interval. The shaded grids indicate the combinations of implied and realized intervals that 
fulfil the principle. A small X is displayed where the example fragment from Figure 25 would 
be positioned along the grid. According to the principle of Registral Return, the example 
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fragment (containing intervals of 2 semitones + 2 semitones) would not be predictable 
according to the algorithm as it lies outside the shaded area. 

The implication-realization model has been quantified by Krumhansl (1995b), who 
also added a new principle, Consonance, to the model. The Figure 27 displays the 
quantification schemes of all six principles in Narmour’s model, available in the 
Toolbox as narmour function.  

 
Figure 27. Quantification of Narmour's Implication-realization model (Krumhansl, 
1995b). The darker areas indicate better realization of implied intervals. 
A cursory look at the shaded areas of Figure 27 indicates that proximate pitches 
(Proximity), reversals of direction in large intervals (Registral Direction) and unisons, 
perfect fourths, fifths and octaves (Consonance) are preferred as realized intervals by 
Narmour’s model. 
 
Other factors affect melodic expectations as well. The local key context is also a 
strong influence on what listeners expect of melodic continuations. If the key of the 
passage is known, tonal stability values (obtained from the experiment by Krumhansl 
& Kessler, 1982, shown in Figure 12) can be used to evaluate the degree of fitness of 
individual tones to the local key context. tonality function in the MIDI toolbox can 
be used to assign these values to note events assuming the key is in C major or C 
minor. In addition, differences in tonal strengths of the individual pitch-classes form 
asymmetrical relationships between the adjacent pitches. Tonally unstable tones tend 
to be attracted to tonally stable tones (e.g., in C major, B is pulled towards the tonic C, 
and G to either A or G). This melodic attraction (Lerdahl, 1996) provides an account 
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for the attraction across the pitches in tonal pitch space. This model can be evoked by 
the melattraction function. Finally, recent revisions of Narmour’s model by von 
Hippel (2000) offer a solution to melodic expectancy that is connected to the 
restrictions of melodic range, which have probably originated from the limitations of 
vocal range. These reformulations are called tessitura and mobility (and these are 
available in the Toolbox as functions tessitura and mobility). The former 
predicts that forth-coming tones will be close to median pitch height. The latter uses 
autocorrelation between successive pitch heights to evaluate whether the tone is 
predictable in relation to the previous intervals and the mean pitch. 
 
Next, we can explore how suitable three alternate continuations are to our example 
tune Läksin using the above-mentioned principles of melodic expectancy. 
 

 

 

 

 

 

 

 

 

 

Figure 28. Fitness of four melodic continuations to a segment of the Läksin tune according to 
six different predictions. 

In Figure 28 the Läksin tune is interrupted at the middle of a phrase and three 
alternative continuations in addition to the actual continuation (G) are proposed. The 
model predictions for each of these tones are shown below the notation. The actual 
tone receives the highest mean score and the chromatic tones (E and G) receive the 
lowest mean scores. The individual predictions of the different models illuminate why 
these candidates receive different fitness rating according to the models. The tone G, 
the highest candidate, is appropriate to continue the sequence because of its close 
proximity to the previous and median tone of the sequence, high degree of tonal 
stability of the mediant tone (G) in e-minor and because its movement direction can 
be predicted from the previous pitch heights. The lowest candidate G is also close in 
pitch proximity but it is not tonally stable and it also forms dissonant interval with the 
previous tone. Note that not all principles are commonly needed to estimate the fitness 
of a given tone to a sequence and the exact weights of the principles vary across 
music styles. Furthermore, this method does not explicitly account for longer pitch 
patterns although it is evident that in the example melody, listeners have already come 
across similar melodic phrase in the beginning of the melody. However, these issues 
can be examined using contour-related (Example 2) and continuous models (Example 
7). 
 

Continuations Context 
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Example 7: Melodic Complexity 

Occasionally, it is interesting to know how complicated, difficult or ‘original’ a 
melody is. For example, Dean Keith Simonton (1984, 1994) analyzed a large number 
of classical themes and noticed that the originality of the themes is connected with 
their popularity. This relationship is in the form of inverted-U function where the 
most popular themes are of medium originality. As a result, the most simple themes 
are not popular (they may be considered ‘banal’) and neither are the most complex 
ones. There are also other uses for a melodic complexity measure such as using it as 
an aid in classification of melodic material (Toiviainen & Eerola, 2001). Simonton’s 
model of melodic originality is based on tone-transition probabilities. The output of 
this model (compltrans) produces an inverse of the averaged probability, scaled 
between 0 and 10 where higher value indicates higher melodic originality. 
 
Another way of assessing melodic complexity is to focus on tonal and accent 
coherence, and to the amount of pitch skips and contour self-similarity the melody 
exhibits. This model has been coined expectancy-based model (Eerola & North, 2000) 
of melodic complexity because the components of the model are derived from 
melodic expectancy theories (available as complebm function). An alternative 
measure of melodic complexity is anchored in continuous measurement of note event 
distribution (pitch-class, interval) entropy (use movewindow and entropy and 
various distribution functions). This measure creates melodic predictability values for 
each point in the melody (hence the term continuous). These values have been found 
to correspond to the predictability ratings given by listeners in experiments (Eerola et 
al., 2002). This measure offers a possibility to observe the moment-by-moment 
fluctuations in melodic predictability. 
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Figure 29. Predictability of Bach’s Sarabande (first 27 measures). 

The Figure 29 displays how the predictability fluctuates over time. In the beginning, 
predictability increases as the opening melodic motifs are repeated (see Figure 4 for 
notation). At measure 20, the Sarabande takes a new turn, modulates and contains 
large pitch skips all that lead to lower predictability values. 
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Example 8: Analyzing MIDI Collections 

In this example, we have a sample of 50 Finnish Folk songs from the Suomen Kansan 
Sävelmät –collection (Eerola & Toiviainen, 2004). First, we load all songs saved in a 
Matlab cell matrix (see the first line of commands below and the notes about the 
collection format in the Chapter 3). Then we can investigate any property of the 
collection with a single command (analyzecoll). For example, the following 
commands can be used to calculate the pitch-class profile of all songs in the collection 
(all songs have been transposed into C major/c minor). 
 
 » load finfolktunes.mat % we get a variable, nm  
 » pcd = analyzecoll(nm,'pcdist1'); % 50 x 12 matrix  
 » meanpcd = mean(pcd,1); % collapsed into 12-comp. vector 
 » plotdist(meanpcd); 
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Figure 30. Key profile of the 50 Finnish folk songs (Eerola & Toiviainen, 2004). 

In order to compare the resulting distribution to a suitable existing reference 
distribution, one can use the refstat function in the Toolbox. Various reference 
statistics in the refstat function can be listed using the help command. To obtain 
the mean pitch-class distributions in Essen Folk Song Collection and in Schubert 
songs, type: 
 
 » essen_pc = refstat('pcdist1essen'); 
 » schubert_pc = refstat('pcdist1schubert'); 
 
The Essen tone profile has been obtained from the digital folk song collection, edited 
by Helmut Schaffrath (1995), from which the songs have been converted into **kern 
representation (Huron, 1999) and subsequently to MIDI and then analyzed using the 
MIDI Toolbox. The Schubert profile is based on the work by Knopoff and Hutchinson 
(1983) who tallied the frequency of intervals in Schubert songs in major keys. Now 
we can plot the pitch-class distributions of these three corpora. 
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Figure 31. Pitch-class profiles of Finnish (Eerola & Toiviainen, 2004) and European folk 
songs (Essen collection, Schaffrath, 1995) and Schubert songs (Knopoff & Hutchinson, 
1983). 

The note distributions of the three collections seem to be highly similar. The profile 
obtained from the Finnish folk songs displays some differences, mainly concerning 
higher proportion of subdominant (F) and lowered leading note (B) than the other 
collections, which may reflect the modal character of some tunes in the Finnish 
corpus. In general, however, the pitch-class distributions may not differ much in 
various styles of Western music. For example, bebop jazz solos and classical music 
correlate highly (Järvinen, 1995) as well as Finnish spiritual folk hymns and North 
Sami yoiks (Krumhansl, 2000). In addition, the correlation between the Krumhansl & 
Kessler key profiles (shown in Figure 12 and also obtainable by refstat function) 
and probabilities of various pitches within tonal music is high (around +.88). For this 
reason, the pitch-class profiles do not discriminate the musical styles sufficiently. 
 
If we take a look at another distribution, we see how the visual comparison of the 
profiles grows even more difficult. Below are the note transitions profiles from Essen 
folk song collection and classical music, obtained by Youngblood (1958). These 
distributions can be obtained by refstat function in the Toolbox using 
'pcdist2essen' and'pcdist2classical2' switches, respectively). 
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Figure 32. Note transitions in classical music (Youngblood, 1958) and Essen collection 
(Schaffrath, 1995). 

In Figure 32, note repetitions have been omitted from the profile describing note 
transitions in the Essen collection, as Youngblood (1958) did not originally tally 
them. Thus, the diagonals of both profiles are empty. The common transitions, C-D, 
D-C, F-E, G-C, G-F, E-C, C-B, seem to occur with similar frequency in the two 
collections, but it is difficult to say how different the profiles actually are. A distance 
metric can be used to calculate the degree of similarity of the profiles. Several 
distance metrics can be used: Pearson’s correlation coefficient is commonly 
employed, although it is problematic, as it does not consider absolute magnitudes and 
note events in music are not normally distributed in the statistical sense (Toiviainen, 
1996).  
 
A more consistent (dis)similarity measure is the Euclidean distance between the two 
vectors representing the distributions. Chi-square measure is another method of 
comparison. In addition, city block distance or cosine direction measures may be used 
to calculate the distances between the distributions (Everitt & Rabe-Hesketh, 1997). 
Some of these distance measures are considered in more detail in Example 8 (Chapter 
5). 
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Example 9: Melodic similarity 

Some of the distance measures outlined in the previous example can be used to 
calculate the similarity between motifs, phrases or other melodic segments. In the 
toolbox, this is handled by the meldistance function, which calculates the distance 
(or similarity) between two notematrices using a user-defined representation (various 
distributions or melodic contour) and distance measure. In this function, similarity can 
be scaled to range between 0 and 1, the latter indicating perfect similarity although 
this value does not indicate absolute similarity but is meaningful when compared to 
other melodic pair ratings (see demos for a longer example). For example, the 
similarity between the four phrases of Läksin tune, using contour representation (20 
samples) and taxi cab distance (scaled between 0 and 1), is calculated as follows: 
 
 » laksin=reftune('laksin_complete'); 
 » phrase{1} = onsetwindow(laksin,0,8);  
 » phrase{2} = trim(onsetwindow(laksin,9,17));  
 » phrase{3} = trim(onsetwindow(laksin,18,28)); 
 » phrase{4} = trim(onsetwindow(laksin,29,37)); 
 » 
 » for i=1:4 
 » for j=1:4 
 »  dst(i,j) = meldistance(phrase{i},phrase{j},... 
 »          'contour','taxi',20,1); 
 » end 
 » end 
 » dst = tril(dst,-1) 

Figure 33. Läksin minä kesäyönä. The phrases are marked with capital letters. 

 
Table 1. Melodic similarity using different representations (rescaled between 0-1). 

 contour   durdist1 
Phrase A B C  Phrase A B C 

A     A    
B .90    B .63   
C .80 .76   C .63 .95  
D .90 1.00 .76  D .54 .91 .89 

 
In the code, the phrases are first extracted and inserted into a single cell structure 
using curly brackets. This allows the comparison to be performed for a single variable 
(phrase). Next, a simple loop is used to compare all phrases with each other. Finally, 
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the lower part of the resulting 4 x 4 matrix are displayed using tril function, shown 
in Table 1. The table also displays the similarities using another representation, 
namely distribution of durations ('durdist1' parameter in the meldistance 
function). Figure 33 illustrates the phrases involved in the comparison. 
 
For the contour representation, the phrases B and D are identical (similarity 1.00) and 
the phrase C differs most from the other phrases. This seems intuitively reasonable 
although the exact numbers should be viewed with caution. However, similarity based 
on the distribution of note durations indicates greatest similarity between the phrases 
B and C (.95) and lowest similarity between A and D (.54). The results of this simple 
indicator of rhythmic similarity are in contrast with the contour representation. These 
results are, again, readily apparent from the notated score. Another common 
comparison strategy between melodic segments involves dynamic programming, 
which is not covered in this tutorial (see e.g., Stammen, & Pennycook, 1993; Hu, 
Dannenberg & Lewis, 2002). 
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Example 10: Creating Sequences 

The Toolbox may be used to create melodies and chord sequences that can, in turn, be 
saved as MIDI or synthesized audio files. For example, to recreate the chord context 
version of the well-known probe-tone sequences (Krumhansl & Kessler, 1982), use 
createnmat function. 
 
 » IV = createnmat([65 69 72],0.5);  
 » IV = setvalues(IV,'onset',0); 
 » V = shift(IV,'pitch',2);  
 » V = shift(V,'onset',0.75,'sec'); 
 » I = shift(V,'pitch',-7);  
 » I = shift(I,'onset',0.75,'sec'); 
 » probe = createnmat([61],0.5);  
 » probe = shift(probe,'onset', 3, 'sec'); 
 » sequence = [IV; V; I; probe]; 
 
The first line creates a IV chord in C major (F A C) that lasts for 0.5 seconds and 
starts at 0 seconds (second line). The third line transposes the first chord (IV) major 
second up and shifts the onset time by 0.75 so that this chord (V) follows the first 
chord after 0.25 second pause. The fifth and sixth line repeats this operation for the 
third chord (I). Lines seven and eight create the probe-tone (C) and the final line 
combines the individual chords and the probe-tone into a sequence. 
 
To synthesize the sequence using Shepard tones, which de-emphasize pitch height 
and underline pitch-class, use the nmat2snd function. The following creates the 
probe sequence as a CD-quality audio file using the Shepard tones: 
 
 » signal = nmat2snd(sequence,'shepard',44100); %  
 
 » plot(signal) % create a plot of the signal 
 » l=length(signal); 
 » ylabel('Amplitude'); xlabel('Time (in s)') % labels 
 » set(gca,'XTick',(0:22050:l)) 
 » set(gca,'XTickLabel',(0:22050:l)/44100) % in seconds 

Figure 34. The probe sequence as an audio signal (mono). 

In most circumstances, the sampling rate (the second parameter, 44100 samples per 
second in the example above) can be left out. In that case, considerably lower but 
sufficient sampling rate (8192 Hz) is used. To play and write the signal to your hard-
drive, use Matlab’s own functions soundsc and wavwrite: 
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 » soundsc(signal,44100); % play the synthesized sequence 
 » wavwrite(signal,44100,'probe.wav'); % write audio file 
 
Note that in order to create a stereo audio file the signal must be in two channels, 
easily created by duplicating the signal to two channels: 
 
 » stereo = [signal; signal]'; 
 
To demonstrate the so-called Shepard illusion (Shepard, 1964), where a scale 
consisting of semitones is played over four octaves using Shepard tones, type: 
 
 » playsound(createnmat([48:96],.5),'shepard');  
 
Shepard tones are ambiguous in terms of their pitch height although their pitch-class 
or pitch chroma can be discerned. When 12 chromatic tones are played in ascending 
order over and over again, an illusion of a continuous ascending pitch sequence will 
form although the point at which the sequence starts over is not perceived. 
 
Hearing pairs of tones in succession will form a perception of an ascending or a 
descending interval. When tritone intervals (e.g., C-F) are played using Shepard 
tones, the direction of the interval is ambiguous. Sometimes listeners hear certain 
tritones as ascending and sometimes descending. To listen to the tritone paradox (see 
Deutsch, 1991; Repp, 1994), type: 
 
 » playsound(reftune('tritone'),'shepard'); 
 
Perception of interleaved melodies provides another example of melody creation. In 
interleaved melodies, successive notes of the two different melodies are interleaved so 
that the first note of the first melody is followed by the first note of second melody, 
followed by the second note of the first melody followed by the second note of the 
second melody and so on. Using these kinds of melodies in perceptual experiments, 
Dowling (1973; and later Hartmann & Johnson, 1991) has observed that listeners’ 
ability to recognize the melodies is highly sensitive to the pitch overlap of the two 
melodies. When the melodies are transposed so that their mean pitches are different, 
recognition scores increase. Create these melodies using reftune and trans 
functions and test at which pitch separation level you spot the titles of the songs. 
 
 » d1 = reftune('dowling1',0.4); 
 » d2 = reftune('dowling2',0.4); 
 
 » d2=shift(d2,'onset',+.2,'sec'); % delay (0.2 sec) 
 » d2=shift(d2,'dur',-.2,'sec'); % shorten the notes 
 » d1=shift(d1,'dur',-.2,'sec'); % shorten the notes 
 
 » playsound([d1; d2]); pause  
 » playsound([d1;shift(d2,'pitch',-3)]); pause 
 » playsound([d1;shift(d2,'pitch',6)]); pause 
 » playsound([d1;shift(d2,'pitch',-9)]);  
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CHAPTER 5 – FUNCTION REFERENCE 
This chapter contains detailed descriptions of all MIDI Toolbox functions. It begins 
with a list of functions grouped by subject area and continues with the reference 
entries in alphabetical order. Most of the subject areas are self-explanatory (plotting 
functions, segmentation functions) but some may need further explanation. 
CONVERSION FUNCTIONS convert from MIDI files to Matlab or vice versa or 
perform some other type of conversion. META FUNCTIONS is a special category, 
in which a function uses another function to perform an operation to a collection. 
FILTER FUNCTIONS mostly return a new NMAT that has been modified 
according to the particular filter used. STATISTICAL FUNCTIONS refer to various 
event distributions of the notematrix (proportion of pitch-classes in a notematrix, for 
example). 
 
The output format of the functions is indicated on the rightmost column. The 
following abbreviations are used: 
 

Abbr. Explanation 
s Scalar 
r Row vector 
c Column vector (scalar value for each note) 
nm Notematrix 
cm Cell matrix 
m Matrix 
o Other (e.g., output can be a Figure, sound or a text string)  
- None 
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CONVERSION FUNCTIONS 
Function Purpose Output 
dir2coll Converts a directory of MIDI files to cellmatrix structure  cm 
hz2midi Convert frequencies to MIDI numbers  c 
keyname Convert keys (24) to key names (text)  o 
midi2hz Convert MIDI note numbers to frequencies (Herz) c 
notename Convert MIDI numbers to American pitch spelling (text)  o 
readmidi Reads a MIDI file to a notematrix nm 
writemidi Writes a MIDI file from a notematrix  (file) 

GENERATION FUNCTIONS 
Function Purpose Output 
createnmat Create a notematrix from the input arguments nm 
setmidiplayer Define external MIDI player - 
nmat2snd Synthesize NMAT using simple synthesis o 
playmidi Plays NMAT using external MIDI player o 
playsound Play and synthesize NMAT using simple synthesis o 
reftune Obtain a 'reference' or example tune nm 

FILTER FUNCTIONS 
Function Purpose Output 
dropmidich Note events that are not on channel CH  nm 
dropshortnotes Returns note events that are shorter than THRESHOLD  nm 
elim Eliminate short MIDI tracks nm 
extreme Returns extreme pitches (high/low) of a polyphonic NMAT nm 
getmidich Note events on channel CH  nm 
ismonophonic Returns 1 if the sequence is monophonic s 
mchannels Midi channels that are used in NMAT  r 
movewindow Runs a selected function within a defined time window  c 
onsetwindow Events with mintime <= onsettime <= maxtime nm 
perchannel Create output for each available channel  o 
quantize Quantize note onsets and durations of NMAT nm 
scale Scales note data in given dimension (time, onsets, or duration) nm 
setvalues Sets the chosen notematrix value for every event nm 
shift Shifts note data in given dimension (onset, duration, or pitch) nm 
transpose2c Transposes NMAT to C major/C minor nm 
trim Removal of leading silence (trim) nm 
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META FUNCTIONS 
Function Purpose Output 
analyzecoll Analyzes all NMAT in the COLLECTION  o 
analyzedir Analyzes all MIDI files in the directory  -(file) 
filtercoll Filter COLLECTION according to filter function cm 

PLOTTING FUNCTIONS 
Function Purpose Output 
pianoroll Plots the NMAT as a "pianoroll" notation  o 
plotdist Plots pitch-class-, interval- or duration-distributions or 

i i
o 

plothierarchy Plots the metrical hierarchy of NMAT o 
plotmelcontour Plots the contour of NMAT using STEP resolution o 

STATISTICAL FUNCTIONS 
Function Purpose Output 
durdist1 Distribution of note durations  r 
durdist2 Duration transitions (duration pairs)  m 
entropy Entropy of a distribution  s 
ivdirdist1 Distribution of interval directions r 
ivdist1 Distribution of intervals  r 
ivdist2 Interval transitions (interval pairs)  m 
ivsizedist1 Distribution of interval sizes r 
nnotes Number of notes in NMAT s 
pcdist1 Distribution of pitch-classes  r 
pcdist2 Pitch-class transitions (dyads)  m 
refstat Reference statistics (key profiles, Essen collection, etc.)  r/m 

KEY-FINDING FUNCTIONS 
Function Purpose Output 
keymode Estimates the keymode (1=major, 2=minor) based on KK key s 
keysom Projection of pitch class distribution on a self-organizing map 

(Toiviainen & Krumhansl, 2003) 
- 

keysomanim Animation using the KEYSOM function -/m 
kkcc Correlation of the pitch class distribution to K & K profiles  r 
kkkey Returns the key of NMAT according to the Krumhansl-Kessler 

algorithm  
s 

maxkkcc Maximal correlation of the PC distr. with 24 K & K profiles  s 
tonality Krumhansl & Kessler key profiles values (major/minor)  c 
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CONTOUR FUNCTIONS 
Function Purpose Output 
melcontour Contour vector  r 
combcontour Builds the Quinn (1999) representation of melodic contour m 

SEGMENTATION FUNCTIONS 
Function Purpose Output 
segmentgestalt Segmentation algorithm by Tenney & Polansky (1980) c 
segmentprob Probabilistic estimation of segment boundaries based on the 

Essen collection 
c 

boundary Local Boundary Detection Model by Cambouropoulos (1997) c 

MELODIC FUNCTIONS 
Function Purpose Output 
ambitus Melodic range in semitones s 
complebm Expectancy-based model of melodic complexity (Eerola & 

North, 2000) 
s 

compltrans Melodic originality measure (Simonton, 1984) s 
gradus Degree of melodiousness (Euler, 1739) s 
melaccent Melodic accent (Thomassen, 1982)  c 
melattraction Melodic attraction (Lerdahl, 1996)  c 
meteraccent Measure of phenomenal accent synchrony (Eerola, 2003) c 
mobility Melodic motion as a mobility (Hippel, 2000) c 
narmour Implication-realization principles by Narmour (1990)  c 
tessitura Melodic tessitura based on deviation from median pitch height 

(Hippel, 2000) 
c 

meldistance Measurement of distance between two NMATs s 
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METER-RELATED FUNCTIONS 
Function Purpose Output 
concur Calculates the proportion of concurrent onsets in NMAT  s 
duraccent Returns duration accent of the events (Parncutt, 1994) c 
gettempo Get tempo (in BPM) s 
meter Autocorrelation-based estimate of meter (Toiviainen & 

Eerola, 2004) 
s 

metrichierarchy Metrical hierarchy (Lerdahl & Jackendoff, 1983)  c 
notedensity Notes per beat or second s 
nPVI Measure of durational variability of events (Grabe & Low, 

2002) 
s 

onsetacorr Autocorrelation function of onset times r 
onsetdist Distribution of onset times within a measure r 
settempo Set tempo (in BPM) - 
 
 
The following private functions reside in private directory under the MIDI Toolbox. 
They are used by other functions and are not designed to be run individually. 

PRIVATE FUNCTIONS 
Function Purpose Output 
distance Distance between two vectors under a given metric s 
dursec Note durations in seconds (for compatibility) c 
exptimewindow Exponential time windowing nm 
ofacorr Autocorrelation of an onset function  r 
onsetfunc Sum of delta functions at onset times  m 
onsetmodmeter Onset times in relation to meter c 
onsetsec Note onsets in seconds (for compatibility) c 
xcorr Cross-correlation function estimates r 

DEMOS 
Function Purpose Output 
mididemo Run through 8 MIDI Toolbox demos m 
mdemo1 ... 8 Eight demo files m 
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ambitus 
Function synopsis 

Melodic range in semitones  
Function syntax 

function a = ambitus(nmat)  
Function comments 
Returns the melodic rage (ambitus) in semitones of NMAT  
 
Input argument:  
 NMAT = notematrix  
Output:  
 A = melodic range in semitones  
Example: 
 y = ambitus(nmat);  

 
 

analyzecoll 
Function synopsis 

Analysis of collection using a specified function  
Function syntax 

function data = analyzecoll(coll, functionname, <other 
arguments>) 

Function comments 
ANALYZECOLL works only with functions that take the notematrix as 
 input argument and works only with functions returning either scalar  
 or row vector. 
 
Input arguments:  
 COLL = name of the collection  
 FUNNAME = name of the function  
 <OTHER ARGUMENTS> possible other arguments to be passed to function FUNNAME  
Output:  
 DATA = scalar or row vector containing the output of function FUNNAME  
 with each notematrix of the collection used as input argument  
Example:  
 keys = analyzecoll(collection, 'kkkey');  

See also 
analyzedir, filtercoll 

 
 

analyzedir 
Function synopsis 

Analysis of MIDI files in a directory  
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Function syntax 
analyzedir(ofname,varargin) 

Function comments 
Analyzes all the midi files in the current directory using the functions whose names are given as input 
arguments  
and writes the result to file OFNAME. 
  
Input arguments:  
 OFNAME = output filename (string)  
 VARARGIN = name(s) of the function(s) (strings)  
Output: 
 file OFNAME and diagnostic index of processed files  
Remarks: 
 This function works only with functions that take the notematrix as input argument and 
return only one output argument. Also the midi files must have the postfix '.mid'. To create the output 
file outside of current directory, the full path name has to be included in the first argument.  
Example:  
 analyzedir('myOutputFile', 'pcdist1', 'ivdist1', 'durdist1'); 

See also 
analyzecoll, filtercoll 

 
 

boundary 
Function synopsis 

Local Boundary Detection Model by Cambouropoulos (1997) 
Function syntax 

function b = boundary(nmat, <fig>)  
Function comments 
 Returns the boundary strength profile of NMAT  
 according to the Local Boundary Detection Model  
 by Cambouropoulos (1997)  
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 B = strength of boundary following each note  
 FIGURE (optional) = if any value is given, creates a graphical output  
 Remarks:  
 Cambouropoulos, E. (1997). Musical Rhythm: Inferring Accentuation and  
 Metrical Structure from Grouping Structure. In Music, Gestalt and  
 Computing - Studies in Systematic and Cognitive Musicology. M. Leman  
 (ed.), Springer-Verlag, Berlin.  
  
 Example: y = boundary(nmat) 
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combcontour 
Function synopsis 

Builds the Marvin & Laprade (1987) representation of melodic 
contour  

Function syntax 
c = combcontour(nmat)  

Function comments 
 For a melody nmat with n notes, combcontour builds an n x n matrix  
 of ones and zeros. A one is inserted in the i,j-th entry if the  
 pitch of note i is higher than the pitch of note j. A zero is inserted  
 otherwise. This matrix is a representation of melodic contour,  
 preserving relative rather than specific pitch height information.  
  
 Input arguments:  
 NMAT = notematrix  
  
 Output:  
 C = matrix of ones and zeros representing melodic contour.  
  
 Example:  
 m = combcontour(nmat)  
  
 Reference:  
  Marvin, E. W. & Laprade, P. A. (1987). Relating music contours:  
       Extensions of a theory for contour. Journal of Music Theory,  
       31(2), 225-267.  

 
 

complebm 
Function synopsis 

Expectancy-based model of melodic complexity (Eerola & North, 
2000)  

Function syntax 
y = complebm(nmat, <method>) 

Function comments 
Expectancy-based model of melodic complexity based either on pitch or rhythm-related components or  
on an optimal combination of them together (METHOD). The output is calibrated with the Essen 
collection so that the mean value in the collection is 5 and standard deviation is 1. The higher the 
output value is, the more complex the NMAT is.  
  
Input arguments: 
 NMAT = notematrix  
 METHOD stands for a specific method:  
  'p'  = pitch-related components only 
  'r'  = rhythm-related components only 
  'o'  = optimal combination of pitch- and rhythm-related components  
Output: 



■ CHAPTER 5 – FUNCTION REFERENCE 56 
 
 

■                           MIDI Toolbox                           ■ 

 y = integer for complexity that is calibrated in relation to Essen Collection (Schaffrath, 
1995). Higher values = higher complexity. 
Example: Analyze a folk tune 'laksin' for its pitch-related complexity:  
 compl_ebm(laksin,'p')  
ans = 5.151  
 
The answer means that the tune is somewhat more complicated than the average tune in Essen 
collection (0.151 standard deviations higher). 
 
References: 
Eerola, T. & North, A. C. (2000) Expectancy-Based Model of Melodic Complexity. In Woods, C., 

Luck, G.B., Brochard, R., O'Neill, S. A., and Sloboda, J. A. (Eds.) Proceedings of the Sixth 
International Conference on Music Perception and Cognition. Keele, Staffordshire, UK: 
Department of Psychology. CD-ROM.  

Schaffrath, H. (1995). The Essen folksong collection in kern format. [computer database]. Menlo Park, 
CA: Center for Computer Assisted Research in the Humanities.  

See also 
compltrans 

 
 

compltrans 
Function synopsis 

Melodic originality measure (Simonton, 1984)  
Function syntax 

s = compltrans(nmat)  
Function comments 
Calculates Simonton's (1984, 1994) melodic originality score based on 2nd order pitch-class 
distribution of classical music that has been derived from 15618 classical music themes. 
 
Input argument:  
 NMAT = notematrix  
Output:  
 S = integer (inverse of averaged probability), scaled between 0 and 10 (higher value 
indicates higher melodic originality.  
 
References: 
Simonton, D. K. (1984). Melodic structure and note transition probabilities: A content analysis of 
15,618 classical themes. Psychology of Music, 12, 3-16. 
Simonton, D. K. (1994). Computer content analysis of melodic structure: Classical composers and their 
compositions. Psychology of Music, 22, 31-43.  
See also 
complebm 

 
 

concur 
Function synopsis 

Detection of simultaneous onsets in a notematrix  
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Function syntax 
c = concur(nmat,<threshold>)  

Function comments 
Calculates the number of simultaneous onsets in NMAT with certain beat THRESHOLD. This function 
can be used in finding and eliminating short tracks in multichannel MIDI files.  
 
Input arguments:  
 NMAT= notematrix  
 THRESHOLD = (optional) value for threshold for concurrent onsets. Default value is ± 0.2 
beats  
Output:  
 C = integer displaying the proportion of concurrent onsets  
Remarks: 
 Only the NOTES vector is required for the input, other input arguments are optional and 
will be replaced by default values if omitted. 
Example:  
 concur(nmat,0.25);  

See also 
channel, elim  

 
 

createnmat 
Function synopsis 

Create isochronous notematrix  
Function syntax 

nmat = createnmat(notes,<dur>,<vel>,<ch>) 
Function comments 
Function creates a notematrix of isochronous pitches based on the NOTES vector. This is useful for 
demonstration purposes and for creating stimuli with certain properties. 
 
Input arguments:  
 NOTES = pitch vector (e.g., [60 64 67] for C major chord)  
 DUR (optional) = note durations in seconds (default 0.25)  
 VEL (optional) = note velocities (0-127, default 100)  
 CH (optional) = note channel (default 1)  
Output:  
 NMAT = notematrix  
Remarks: 
 Only the NOTES vector is required for the input, other input arguments are optional and 
will be replaced by default values if omitted.  
Example: Create major scale going up  
 major = [0 2 4 5 7 9 11 12] + 60;  
 nmat = createnmat(major,0.2);  
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dir2coll 
Function synopsis 

Conversion of directory of midi files to cell matrix  
Function syntax 

[nm,name] = dir2coll(ofname)  
Function comments 
Function converts all MIDI files in a directory to cellmatrix structure (NM). The filenames are also 
saved (NAME). If output filename (ofname) is given, the variables are saved as a Matlab *.MAT file.  
  
Input arguments:  
 OFNAME = 'filename' (string)  
Output:  
 NM = cell matrix of all MIDI files in a directory  
 NAME = filenames (string)  
Remarks: 
 If the input argument is left out, no variables are saved.  
Example: [nm,name] = dir2coll;  
 Reads the midi files in the current directory to the cell matrix structure  

 
 

dropmidich 
Function synopsis 

MIDI channel based filtering of notes  
Function syntax 

nmatf = dropmidich(nmat, ch) 
Function comments 
Filters out note events of NMAT that are on channel CH  
  
Input arguments:  
 NMAT = notematrix  
 CH = number of midi channel to be filtered out  
Output:  
 NMATF = filtered notematrix  
Example: Remove drum track of general MIDI file 
 nmatf = dropmidich(nmat,10); %  

 
 

dropshortnotes 
Function synopsis 

Filtering of short notes  
Function syntax 

nmatf = dropshortnotes(nmat, unit, threshold) 
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Function comments 
Filters out note events in NMAT that are shorter than THRESHOLD.  
  
Input arguments:  
 NMAT = notematrix  
 UNIT = time unit for duration: possible values are 'sec' and 'beat'  
 THRESHOLD = duration threshold for filtering  
Output:  
 NMATF = filtered notematrix  
Example: Filter out notes shorter than 1/16:  
 nmatf = dropshortnotes(nmat, 'beat', 1/16)  

 
 

duraccent 
Function synopsis 

Duration accent by Parncutt (1994)  
Function syntax 

D = duraccent(dur,<tau>,<accent_index>)  
Function comments 
Function returns duration accent of the events (Parncutt, 1994, p. 430-431) where tau represents 
saturation duration, which is proportional to the duration of the echoic store. Accent index covers the 
minimum discriminable duration. The difference between Parncutt's model and this implementation is 
on the IOI (inter-onset-intervals).  
  
Input arguments:  
 DUR = vector of note duration in 
seconds  
 TAU (optional) = saturation duration 
(default 0.5)  
 ACCENT_INDEX (optional) = 
minimum discriminable duration (default 2)  
Output:  
 D = new duration vector 
corresponding to the size of input vector  
Remarks: 
 The original model uses IOI (inter-
onset-intervals) for input whereas this version 
takes the note duration value in seconds.  
 
Example : duracc = duraccent(dursecs(NMAT));  
References: 
Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. 

Music Perception, 11(4), 409-464.  
 

 

durdist1 
Function synopsis 

Note duration distribution  
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Function syntax 
dd = durdist1(nmat) 

Function comments 
Returns the distribution of note durations in NMAT as a 9-component vector. The centers of the bins 
are on a logarithmic scale as follows:  
 component bin center (in units of one beat)  
 1  1/4  
 2  sqrt(2)/4  
 3  1/2  
 4  sqrt(2)/2  
 5  1  
 6  sqrt(2)  
 7  2  
 8  2*sqrt(2)  
 9  4  
 
Input argument:  
 NMAT = notematrix  
Output:  
 DD = 9-component distribution of note durations  

See also 
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2 

 
 

durdist2 
Function synopsis 

Duration dyad distribution  
Function syntax 

dd = durdist2(nmat) 
Function comments 
Returns the distribution of pairs of note durations of successive notes as a 9 * 9 matrix. For bin centers, 
see DURDIST1.  
 
Input argument:  
 NMAT = notematrix  
Output:  
 DD = 9 * 9 distribution matrix of note duration pairs  

See also 
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2 

 
 

elim 
Function synopsis 

Elimination of "short" midi tracks  
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Function syntax 
[nmate,coverage] = elim(nmat,<extent_crit>)  

Function comments 
Eliminates tracks shorter than EXTENT_CRIT from NMAT. Short tracks are those that are shorter 
than EXTENT_CRIT as percentage of the whole duration.  
  
Input arguments:  
 NMAT = Notematrix  
 EXTENT_CRIT (optional) = minimum proportion of duration that is  
 required for the track (default value is 0.5, that is, 50% coverage)  
Output:  
 NMATE = new, eliminated notematrix  
 COVERAGE = the proportion of onsets in MIDI track  
Remarks: This function can be used in removing extra tracks from MIDI file. 
Example: Eliminate those tracks that have onsets covering less than 20% of the whole duration:  
  nmat2 =elim(nmat,0.2);  

See also 
concur 

 
 

entropy 
Function synopsis 

Entropy of a distribution  
Function syntax 

function h = entropy(d) 
Function comments 
Returns the relative entropy of any distribution given as input argument. 
 
Input argument:  
 D = distribution  
Output:  
 H = relative entropy (0 =< H =< 1)  

 
 

extreme 
Function synopsis 

Returns the extreme pitches (high or low) of a polyphonic NMAT  
Function syntax 

nm2 = extreme(nmat,<meth>)  
Function comments 
  
 Input argument:  
 NMAT = notematrix  
 METH (string) = method, either HIGH (default) or LOW  



■ CHAPTER 5 – FUNCTION REFERENCE 62 
 
 

■                           MIDI Toolbox                           ■ 

  
 Output:  
 NM2 = monophonic notematrix containing only highest/lowest pitches  
  
 Remarks:  
  
 Example: Obtain a new notematrix containing only the lowest lowest pitches:  
 nm2 = extreme(nmat,'low');  
  

 
 

filtercoll 
Function synopsis 

Filter collection using a specified FILTERNAME function  
Function syntax 

data = filtercoll(coll,filtername, <varargin>) 
Function comments 
FILTERCOLL works only with functions that take the notematrix as input argument.  
 
Input arguments:  
 COLL = name of the collection  
 FILTERNAME = name of the FILTER function  
 VARARGIN = possible other arguments to be passed to filter function FUNNAME  
Output:  
 DATA = vector or matrix containing the output of function FUNNAME with each 
notematrix of the collection used as input argument.  
Example:  
 fnm = filtercoll(nm, 'trans',7); % transpose the whole collection a fifth up  

 
 

getmidich 
Function synopsis 

Note events on a given MIDI channel  
Function syntax 

nmatf = getmidich(nmat, ch) 
Function comments 
Returns note events of NMAT that are on MIDI channel CH. 
 
Input arguments:  
 NMAT = notematrix  
 CH = MIDI channel  
Output:  
 NMATF = notematrix containing notes of NMAT that are on MIDI channel CH  

See also 
perchannel  
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gettempo 
Function synopsis 

Get tempo (in BPM)  
Function syntax 

bpm = gettempo(nmat)  
Function comments 
Returns the tempo of the NMAT in beat per minute (BPM). Note that MIDI files can be encoded using 
any arbitrary tempo and therefore the output of this function should be interpreted with caution.  
 
Input argument:  
 NMAT = notematrix  
Output:  
 BPM = tempo (in beats per minute)  

See also 
settempo 

 
 

gradus 
Function synopsis 

Degree of melodiousness (Euler, 1739)  
Function syntax 

y = gradus (nmat)  
Function comments 
Calculates the degree of melodiousness (gradus suavitatis), proposed by L. Euler (1707-1783). He 
suggested that the "degree of melodiousness depends on calculations made by the mind: fewer 
calculations, the more pleasant the experience. [The model] is implemented by a numerical technique 
based on the decomposition of natural numbers into a product of powers of different primes." (Leman, 
1995, p. 5) 
 
Input argument:  
 NMAT = notematrix  
Output:  
 Y = integer (degree of melodiousness) where low value indicates high melodiousness  
References: 
Euler, L. (1739). Tentamen novae theoriae musicae. 
Leman, M.  (1995). Music and schema theory: Cognitive foundations of systematic musicology. Berlin: 

Springer.  
 

 

hz2midi 
Function synopsis 

Hertz to MIDI note number conversion  
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Function syntax 
m = hz2midi(hertz)  

Function comments 
Converts frequency values given in Hertz to MIDI note numbers. Notes are numbered in semitones 
with middle C being 60. Midi note 69 (A3) has a frequency of 440 hertz (abbreviated Hz), i.e., 440 
cycles per second. 
 
Input arguments:  
 HERTZ = frequency in hertz  
Output:  
 M = MIDI numbers  

See also 
pitch, notename  

 
 

ismonophonic 
Function synopsis 
Returns 1 if NMAT is monophonic (logical function) 
Function syntax 

l = ismonophonic(nmat,<overlap>,<timetype>) 
Function comments 
 Returns 1 if the sequence has no overlapping notes in NMAT. Function is for  
 finding errors in monophonic melodies and checking whether analysis is 
 suitable for the selected NMAT. For example, ivdist1 cannot be meaningfully 
 performed for a polyphonic input. 
  
 Input argument:  
 NMAT = notematrix  
 OVERLAP (Optional) = Criteria for allowing short overlap between events.  
                        The default value is 0.1 seconds 
 TIMETYPE (Optional) = timetype ('BEAT' or SEC (Seconds, default). 
 
 Output:  
 L = 1 is monophonic or 0 (contains overlap between the events)  

 
 

ivdist1 
Function synopsis 

Distribution of intervals  
Function syntax 

ivd = ivdist1(nmat) 
Function comments 
Returns the distribution of intervals in NMAT as a 25-component vector. The components are spaced at 
semitone distances with the first component representing the downward octave and the last component 
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the upward octave. The distribution is weighted by note durations. The note durations are based on 
duration in seconds that are modified according to Parncutt's durational accent model (1994).  
 
Input arguments:  
 NMAT = notematrix  
Output:  
 IVD = interval distribution of NMAT  

See also 
plotdist, refstat , durdist1, durdist2, pcdist1, pcdist2 

 
 

ivdist2 
Function synopsis 

Distribution of interval dyads  
Function syntax 

ivd = ivdist2(nmat) 
Function comments 
Returns the distribution of interval dyads in NMAT. The distribution is weighted by note durations. 
The note durations are based on duration in seconds that are modified according to Parncutt's durational 
accent model (1994). 
 
Input arguments:  
 NMAT = notematrix  
Output:  
 IVD = interval distribution of NMAT  

See also 
plotdist, refstat , durdist1, durdist2, pcdist1, pcdist2 

 
 

ivdirdist1 
Function synopsis 

Distribution of interval directions  
Function syntax 

ivd = ivdirdist1(nmat) 
Function comments 
Returns the proportion of upward intervals for each interval size in NMAT as a 12-component vector. 
The components are spaced at semitone distances with the first component representing minor second 
and the last component the upward octave. 
 
Input arguments:  
 NMAT = notematrix  
Output:  
 IVD = interval direction distribution of NMAT  



■ CHAPTER 5 – FUNCTION REFERENCE 66 
 
 

■                           MIDI Toolbox                           ■ 

See also 
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2, ivsizedist1 

 
 

ivsizedist1 
Function synopsis 

Distribution of interval sizes  
Function syntax 

ivd = ivsizedist1(nmat) 
Function comments 
Returns the distribution of interval sizes in NMAT as a 13-component vector. The components are 
spaced at semitone distances with the first component representing the unison and the last component 
the octave  
  
Input arguments:  
 NMAT = notematrix  
Output:  
 IVD = interval size distribution of NMAT  
Example:  
 plotdist(ivsizedist(laksin)); 

See also 
plotdist, refstat , ivdist1, ivdist2, pcdist1, pcdist2 

 
 

keymode 
Function synopsis 

Mode (major vs. minor) estimation  
Function syntax 

k = keymode(nmat) 
Function comments 
Functions estimates the key mode (1=major, 2=minor) based on Krumhansl-Kessler key finding 
algorithm and pitch distribution of the NMAT. This function is used to assign TONALITY values to 
NMAT.  
 
Input argument:  
 NMAT = notematrix  
Output:  
 K = estimated mode of NMAT (1=major, 2=minor)  
Example: k = keymode(nmat)  

See also 
tonality, kkcc, kkkey , maxkkcc  
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keyname 
Function synopsis 

Conversion of key numbers to key names (text)  
Function syntax 

name=keyname(n,<detail>)  
Function comments 
Convert key numbers to key names (text). Encoding:  
 1 = C, 2= C#/Db, ...  
 13 = c, 14 = c#/db, ...  
Input argument:  
 N = key codes (obtained eg. using KKKEY function)  
 DETAIL (optional) = 1 denotes long, otherwise short (default) 
Output: text string  

 
 

keysom 
Function synopsis 

Projection of pitch class distribution on a self-organizing map  
Function syntax 

function keysom(nmat,<cbar>,<cmap>,<tsize>) 
Function comments 
  
 Creates a pseudocolor map of 
the pitch class distribution  
 of NMAT projected onto a 
self-organizing map trained 
with the  
 Krumhansl-Kessler profiles.  
  
 Colors correspond to Pearson 
correlation values.  
  
 Input argument:  
 NMAT = 
notematrix  
 CBAR (optional) 
= colorbar switch (1 = legend 
(default), 0 = no legend)  
 CMAP (optional) = colormap (string, 'jet' (default), 'gray', etc.)  
 TSIZE (optional) = textsize points (default = 16)  
  
 References:  
 Toiviainen, P. & Krumhansl, C. L. (2003). Measuring and modeling  
 real-time responses to music: the dynamics of tonality induction.  
 Perception, 32(6), 741-766.  
  
 Krumhansl, C. L., & Toiviainen, P. (2001) Tonal cognition.  
 In R. J. Zatorre & I. Peretz (Eds.), The Biological Foundations of Music.  



■ CHAPTER 5 – FUNCTION REFERENCE 68 
 
 

■                           MIDI Toolbox                           ■ 

Beat 2.0

C 

Db

D 

Eb

E 

F 

Gb

G 

Ab

A 

Bb

B 

c 

c#

d 

d#

e 

f 

f#

g 

ab

a 

bb

b 

Beat 4.0

C 

Db

D 

Eb

E 

F 

Gb

G 

Ab

A 

Bb

B 

c 

c#

d 

d#

e 

f 

f#

g 

ab

a 

bb

b 

Beat 6.0

C 

Db

D 

Eb

E 

F 

Gb

G 

Ab

A 

Bb

B 

c 

c#

d 

d#

e 

f 

f#

g 

ab

a 

bb

b 

Beat 8.0

C 

Db

D 

Eb

E 

F 

Gb

G 

Ab

A 

Bb

B 

c 

c#

d 

d#

e 

f 

f#

g 

ab

a 

bb

b 

 Annals of the New York Academy of Sciences.  
 New York, NY: New York Academy of Sciences, 77-91.  

 
 

keysomanim 
Function synopsis 

m = keysomanim(nmat, <stmem>, <step>, <ttype>, <opt>)  
Function syntax 

Animation using the KEYSOM function  
Function comments 
  
 Input arguments:  
   NMAT = notematrix  
   STMEM (optional) = length of short-term memory (default = 6 beats)  
           length indicates the time constant of exponentially  
           decaying memory  
   STEP (optional) =window step in beats (default = 0.5)  
   TIMETYPE (optional) = time type ('beat' (default) or 'sec')   
   OPT (optional) = Options:   'MOVIE' creates a MATLAB movie  
                               'STRIP' creates a strip of the animation frames  
                               instead of the animation.  
                               'FRAMES' save each individual frame as a  
                               jpg file to current 
directory  
                               If no option is 
given, the function just  
                               displays the 
frames  
 Output arguments:  
   M = MATLAB movie (if OPT has 
not been set to 'strip'  
  
 Example:  
   m = keysomanim(nm, 3, 0.2, 'sec', 
'movie'); % create a movie using a  
   3-sec window and a step of 0.2 
seconds  
  
 References:  
 Toiviainen, P. & Krumhansl, C. L. (2003). Measuring and modeling  
 real-time responses to music: the dynamics of tonality induction.  
 Perception, 32(6), 741-766.  
  
 Krumhansl, C. L., & Toiviainen, P. (2001) Tonal cognition.  
 In R. J. Zatorre & I. Peretz (Eds.), The Biological Foundations of Music.  
 Annals of the New York Academy of Sciences.  
 New York, NY: New York Academy of Sciences, 77-91.  
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kkcc 
Function synopsis 

Correlations of pitch-class distribution with Krumhansl-Kessler 
tone profiles 

Function syntax 
c = kkcc(nmat,<opt>) 

Function comments 
Returns the correlations of the pitch class distribution PCDIST1 of NMAT with each of the 24 
Krumhansl-Kessler profiles.  
 
Input arguments:  
 NMAT = notematrix  
 OPT = OPTIONS (optional), 'SALIENCE' return the correlations of the  
         pitch-class distribution according to the Huron & Parncutt (1993)  
         key-finding algorithm. 
Output:  
 C = 24-component vector containing the correlation coefficients between the pitch-class 
distribution of NMAT and each of the 24 Krumhansl-Kessler profiles.  
 
Remarks: REFSTAT function is called to load the key profiles.  
 
Example: c = kkcc(nmat, 'salience') 
 
Reference:  
Huron, D., & Parncutt, R. (1993). An improved model of tonality perception incorporating pitch 

salience and echoic memory. Psychomusicology, 12, 152-169.  
Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University 

Press.  

See also 
refstat, keymode, kkkey, maxkkcc  

 
 

kkkey 
Function synopsis 

Key of NMAT according to the Krumhansl-Kessler algorithm  
Function syntax 

k = kkkey(nmat) 
Function comments 
Returns the key of NMAT according to the Krumhansl-Kessler algorithm.  
  
Input argument:  
 NMAT = notematrix  
Output:  
 K = estimated key of NMAT encoded as a number  
  encoding:  C major = 1, C# major = 2, ...  
             c minor = 13, c# minor = 14, ...  
Reference:  
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Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University 
Press.  

See also 
kkccsalience, refstat, keymode, maxkkcc  

 
 

maxkkcc 
Function synopsis 

Maximum correlation from Krumhansl-Kessler algorithm  
Function syntax 

r = maxkkcc(nmat) 
Function comments 
Returns the maximum across the correlations between the pitch class distribution of NMAT and each 
of the 24 Krumhansl-Kessler profiles.  
  
Input argument:  
 NMAT = notematrix  
Output:  
 R = maximum correlation  
Change History :  
 10.6.2002 P. Toiviainen 
Reference:  
Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University 

Press.  

See also 
kkccsalience, refstat, keymode, kkkey 

 
 

mchannels 
Function synopsis 

MIDI channels used in notematrix  
Function syntax 

ch = mchannels(nmat) 
Function comments 
Returns the midi channels that are used in notematrix NMAT. 
 
Input argument:  
 NMAT = notematrix  
Output:  
 CH = vector containing the numbers of all MIDI channels that are used in NMAT  

See also 
perchannel
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melaccent 
Function synopsis 

Melodic accent salience according to Thomassen's model 
Function syntax 

ma = melaccent(nmat) 
Function comments 
Calculates melodic accent salience according to Thomassen's model. This model assigns melodic 
accents according to the possible melodic contours arising in 3-pitch windows. Accent values vary 
between 0 (no salience) and 1 (maximum salience). 
 
Input arguments:  
 NMAT = notematrix  
Output:  
 MA = accent values  
 
Example:  
 example = createnmat([60 60 
62 64 65 64 62],1); 
 subplot(2,1,1); 
pianoroll(example,2,2) 
 subplot(2,1,2); 
stem(m(2:end));  
 axis([0 6.5 0 1]); ylabel('accent 
value'); 
 
Reference:  
Thomassen, J. (1982). Melodic accent: Experiments and a tentative model. Journal of the Acoustical 

Society of America, 71(6), 1598- 1605; see also, Erratum, Journal of the Acoustical Society 
of America, 73(1), 373.  

 
 

melattraction 
Function synopsis 

Melodic attraction according to Lerdahl (1996)  
Function syntax 

m = melattraction(nmat)  
Function comments 
 Calculates melodic attraction according to Fred Lerdahl (1996, p. 343-349):  
   Each tone in key has certain anchoring strength ("weight") in tonal pitch space  
   Melodic attraction strength is note2/note1 in a two-note window, which is  
   affected by the distance between tones.  
  
   The algorithm has two extensions:  
   Extension 1: attraction is modified not only by subsequent neighbor but also  
 on the pitch's other neighbors (this is realized in the way Lerdahl suggested,  
     not only limiting the attraction to one neighbor but to all possible neighbors).  
   Extension 2: directed motion also affects melodic attraction (this is done somewhat  
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     differently than in Lerdahl's paper due to modification of the first extension).  
  
 Remarks:  
   The output has been scaled to fit 
between 0 and 1, larger value  
      indicating higher melodic 
attraction. Also, the key and the 
mode needs to be inferred  
      in order to apply correct tonal 
pitch space values.  
  
 Input arguments:  
 NMAT = notematrix  

  
 Output:  
 M = Melodic attraction 
values for each note in the NMAT 
(between 0-1)  
  
 Example:  
 melattraction(reftune('laksin'));  
  
 Reference:  
       Lerdahl, F. (1996). Calculating tonal tension. Music Perception, 13(3), 319-363.  

 
 

melcontour 
Function synopsis 

Contour vector  
Function syntax 

function c = melcontour(nmat,res,meth,<opt>)  
Function comments 
 Returns the contour vector of the melody in NMAT.  
  
 Input arguments:  
 NMAT = note matrix  
 RES = parameter defining the temporal resolution of C (see below)  
 METH = method for defining temporal resolution (= 'abs' or 'rel')  
  if METH=='abs', RES is defined as the sampling interval  
    in beats  
  if METH=='rel', RES is defined as the number of sampling  
   points  
  default value for METH is 'abs'  
     OPT = if 'AC', returns the autocorrelation function of the contour vector of NMAT  
  
 Output:  
 C = contour vector (or autocorrelation vector)  
  
 Example:  
 c = melcontour(NMAT, 0.25, 'abs'); % uses a step of 0.25 beats  
 c = melcontour(NMAT, 32, 'rel'); % uses 32 sampling points  
 ac = melcontour(NMAT, 0.5, 'abs','ac'); % Autocorrelation function of the contour  
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meldistance 
Function synopsis 

Measurement of distance between two NMATs  
Function syntax 

y=melsim(nmat1,nmat2,<repr>,<metric>,<samples>,<rescale>)  
Function comments 
 Calculates the similarity of two NMATs in a particular representation.  
 Output is a value indicating distance between nmat1 and nmat2 under  
 the given representation and metric. Output value is rescaled to [0, 1] if  
 rescale is set to 1.  
  
 Input arguments:  
 NMAT1= first notematrix  
 NMAT2= second notematrix  
   REPR= string denoting the specific representation used for comparison of the two NMATs:  
       'pcdist1' (default)= distribution of pitch classes  
       'pcdist2'= distribution of pitch class dyads  
       'ivdist1'= distribution of intervals  
       'ivdist2'= distribution of interval dyads  
       'contour'= melodic contour (input number of samples)  
       'combcontour'= Combinatorial Contour (does not accept a metric argument)  
       'durdist1'= distribution of note durations  
       'durdist2'= distribution of note duration dyads  
   METRIC= string denoting the distance metric used for comparison:  
       'taxi' (default)=the taxicab norm  
       'euc'=euclidean distance measure  
       'cosine' =measure of cosine of the angle between vectors  
   SAMPLES= integer number of samples for contour representation.  
            default value is 10.  
   RESCALE= rescales distance to similarity value between 0 and 1. Default  
            is no rescaling. Set to 1 to rescale values.  
  
 Output:  
 y = value representing the distance between the two  
       melodies under the given representation and metric.  
  
 Example:  
 meldistance(nmat1,nmat2,'pcdist1','taxi');  

 
 

meter 
Function synopsis 

Autocorrelation-based estimate of meter  
Function syntax 

m = meter(nmat,<option>) 
Function comments 
Returns an autocorrelation-based estimate of meter of NMAT.  
Based on temporal structure and on Thomassen's melodic accent. 
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Uses discriminant function derived from a collection of 12000 folk melodies. 
m = 2 for simple duple 
m = 3 for simple triple/compound meters (3/8, 3/4, 6/8, 9/8, 12/8, etc.) 
 
 Input argument: 
      NMAT = notematrix 
      OPTION (Optional, string) = Argument 'OPTIMAL' uses a weighted combination 
        of duration and melodic accents in the inference of meter (see Toiviainen & Eerola, 2004). 
 
Input argument:  
 NMAT = notematrix  
Output:  
 M = estimate of meter (M=2 for duple; M=3 for triple)  
Reference:  
   Brown, J. (1993). Determination of the meter of musical scores by autocorrelation. Journal of the 

Acoustical Society of America, 94(4), 1953-1957.  
   Toiviainen, P. & Eerola, T. (2004). The role of accent 
periodicities in meter induction:  
        a classification study, In x (Ed.), Proceedings of the ICMPC8 
(p. xxx-xxx). xxx:xxx.

 
 

meteraccent 
Function synopsis 

Measure of phenomenal accent synchrony  
Function syntax 

a = meteraccent(nmat) 
Function comments 
Returns a measure of phenomenal accent synchrony. It consists of durational accents, pitch accents and 
accentuation from inferred metrical hierarchy. If these accents coincide, accents are highly 
synchronized. 
  
Input arguments:  
 NMAT = notematrix  
Output:  
 A = integer  
References: 
Eerola, T., Himberg, T., Toiviainen, P., & Louhivuori, J. (submitted). Perceived complexity of Western 

and African folk melodies by Western and African listeners. 
Jones, M. R. (1987). Dynamic pattern structure in music: Recent theory and research. Perception and 

Psychophysics, 41, 621-634.  

See also 
meter 

 
 

metrichierarchy 
Function synopsis 

Location of notes in metric hierarchy  
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Function syntax 
mh = metrichierarchy(nmat) 

Function comments 
 Returns a vector indicating the location of each note of NMAT  
 in metric hierarchy. The meter of NMAT is estimated using the  
 function METER. 
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 MH = vector indicating the location of each note in metric  
  hierarchy; encoding:  
   strong beat = 5, weak beat = 4, etc.  

See also 
meter 

 
 

midi2hz 
Function synopsis 

Conversion of MIDI note number to frequency (Hz)  
Function syntax 

f = midi2hz(m)  
Function comments 
 Convert MIDI note numbers to frequencies in Hz. The A3  
 (Midi number 69) is 440Hz.  
  
 Input arguments: M = MIDI note numbers 
  
 Output: F = Frequency in hertz 
 
 Example: midi2hz(pitch(createnmat)); 

 
 

mobility 
Function synopsis 

Mobility (Hippel, 2000)  
Function syntax 

y= mobility(nmat)  
Function comments 
 Mobility describes why melodies change direction after large skips  
 by simply observing that they would otherwise run out of the   
 comfortable melodic range. It uses lag-one autocorrelation between  
 successive pitch heights (Hippel, 2000).  
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 Input argument:  
 NMAT = notematrix  
  
 Output:  
 Y = mobility value for each tone in NMAT  
  
 See also: NARMOUR, TESSITURA  
  
 Example: y = mobility(nmat)  
  
 References:  
 von Hippel, P. (2000). Redefining pitch proximity: Tessitura and  
     mobility as constraints on melodic interval size. Music Perception,  
     17 (3), 315-327.  

 
 

movewindow 
Function synopsis 

Windowed analysis of notematrix using a specified function  
Function syntax 

y = movewindow(nmat,wlength,wstep,timetype,varargin)  
Function comments 
 Applies function defined in VARARGIN to a series of windowed note matrices 
 using window length WLENGTH and step WSTEPs across NMAT  
 Input arguments:  
 NMAT = notematrix  
 WLENGTH = window length in seconds  
 WSTEP = window step size in seconds  
 TIMETYPE = time representation, 'beat' (default) or 'sec'  
   VARARGIN = function (string) or functions 
Output:  
 Y = output of the function VARARGIN (or nested function FUNC2(FUNC1) etc.)  
  applied to NMAT 
 
 Example 1: Find maximal key correlation within a 3-second window - 
      that is moved by 1.5 seconds at a time - of NMAT 
      y = movewindow(nmat,3,1.5,'sec','maxkkcc'); 
 
 Example 2: Find average key velocity within a 6-second window - 
  that is moved by 2 seconds at a time - of NMAT 
  y = movewindow(nmat,6,2,'velocity','mean'); 

 
 

narmour 
Function synopsis 

Predictions from Implication-realization model by Narmour (1990)  
Function syntax 

n = narmour(nmat,prin) 
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Function comments 
 Returns the predictions from Implication-realization model of melodic expectancy by Eugene Narmour 
(1990)  
  
 Input arguments: NMAT = notematrix  
         PRIN (string) denotes a specific principle:  
         rd = registral direction (revised, Schellenberg 1997)  
         rr = registral return (revised, Schellenberg 1997)  
         id = intervallic difference  
         cl = closure  
         pr = proximity (revised, Schellenberg 1997)  
         co = consonance (Krumhansl, 1995)  
  
 Output: N = vector for all the tones in NMAT  
  
 Example: narmour(nmat, 'rd');  
  
 References:  
 Narmour, E. 1990. The Analysis and cognition of basic melodic structures: The Implication-realization 
       model. Chicago, IL: University of Chicago Press. 
 Krumhansl, C. L. (1995). Effects of musical context on similarity and expectancy.  
      Systematische musikwissenschaft, 3, 211-250.  
 Schellenberg, E. G. (1997). Simplifying the implication-realization model of  
      melodic expectancy. Music Perception, 14, 295-318.  

 
 

nmat2snd 
Function synopsis 

Create waveform of NMAT using a simple synthesis  
Function syntax 
w = nmat2snd(nmat, <synthtype>,<fs>)  

Function comments 
 Create waveform of NMAT using a simple FM synthesis. The 
default sampling rate is  

 8192 Hz and velocities are scaled to have  
 a max value of 1.  
  
 SYNTHTYPE 'fm' (default) uses FM synthesis to approximate horn sound.  
 SYNTHTYPE 'shepard' creates waveform of NMAT using Shepard tones. These tones have also been  
  called 'Circular tones' because they are specifically constructed to contain  
  frequency components at octave intervals with an emphasis of the spectral  
  components between 500Hz and 1000 Hz that effectively  
  eliminates octave information (Shepard, 1964).  
  
 Part of the code has been obtained from the work of Ed Doering.  
  Ed.Doering@Rose-Hulman.Edu  
  
 Input argument:  
 NMAT = notematrix  
     SYNTHTYPE (Optional) = Synthesis type, either FM synthesis ('fm', default)  
           or Shepard tones ('shepard')  
     FS (optional) = sampling rate (default 8192)  
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 Output:  
 Y = waveform  
  
 Example 1: samples1 = nmat2snd(laksin);  
 Example 2: samples2 = nmat2snd(laksin,'shepard', 22050);  
  
 Reference:  
    Moore, F. R. (1990). Elements of Computer Music. New York: Prentice-Hall.  
    Shepard, R. N. (1964). Circularity in judgements of  
       relative pitch. Journal of the Acoustical Society of America,  
       36, 2346-2353. 

 
 

nnotes 
Function synopsis 

Number of notes in NMAT  
Function syntax 

n = nnotes(nmat) 
Function comments 
 Returns the number of notes in NMAT  
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 N = number of notes in NMAT  

 
 

notedensity 
Function synopsis 

Number of notes per beat or second  
Function syntax 

n = notedensity(nmat,<timetype>)  
Function comments 
 Returns the number of notes per beat or second in NMAT  
  
 Input argument:  
 NMAT = notematrix  
 TIMETYPE (Optional) = timetype ('BEAT' (default) or SEC (Seconds).  
  
 Output:  
 N = Note density (in beats or seconds) in NMAT  
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notename 
Function synopsis 

Conversion of MIDI numbers to American pitch spelling (text)  
Function syntax 

names = notename(n)  
Function comments 
 Converts MIDI numbers to American pitch spelling (text) where C4#  
 denotes C sharp in octave 4. Octave 4 goes from middle C up to  
 the B above middle C.  
  
 Input argument:  
 N = The pitches of NMAT (i.e. pitch(nmat))  
  
 Output: text string of equivalent size of N.  

See also 
pianoroll, hz2midi, midi2hz  

 
 

nPVI 
Function synopsis 

Measure of durational variability of events (Grabe & Low, 2002)  
Function syntax 

function n = nPVI(nmat)  
Function comments 
 This measure is borne out of language research. It has been noted that  
 the variability of vowel duration is greater in stress- vs. syllable-timed  
 languages (Grabe & Low, 2002). This measure accounts for the   
 variability of durations and is also called "normalized Pairwise Variability  
 Index" (nPVI). Patel & Daniele have applied it to music (2003) by comparing  
 whether the prosody of different languages is also reflected in music. There is  
 a clear difference between a sample of works by French and English composers.  
  
 Input arguments: NMAT = notematrix  
  
 Output: N = nPVI index  
 
 Example: the variability of duration in LAKSIN (a Finnish folk tune available in demos)  
  nPVI(laksin);  
 ans = 26.3861  
  
 References:  
 Patel, A. D. & Daniele, J. R. (2003). An empirical comparison of rhythm in  
     language and music. Cognition, 87, B35-B45.  
 Grabe, E., & Low, E. L. (2002). Durational variability in speech and the  
     rhythm class hypothesis. In C. Gussen-hoven & N. Warner, Laboratory  
     phonology (pp. 515-546). 7. Berlin: Mouton de Gruyter.  
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onsetacorr 
Function synopsis 

Autocorrelation function of onset times  
Function syntax 

ac = onsetacorr(nmat, <ndivs>, <fig>,<func>) 
Function comments 
 Returns autocorrelation of onset times weighted by onset durations.  
 These onset durations, are in turn, weighted by Parncutt's durational accent (1994). 
 This function optionally creates a graph showing the autocorrelation function calculated 
 from onset times weighted by note durations. Finally, a user-defined function (FUNC) 
 can be used to weight the autocorrelation function. For example, TONALITY function  
 is a way of weighting the onset structure by their tonal stability values. MELACCENT may 
 also work in some situations.  
 
 Input arguments:  
 NMAT = notematrix  
 NDIVS (optional) = divisions per quarter note (default = 4);  
 FIG (optional) = plot figure (yes=1, no=0, default=0)  
       FUNC (optional, string) = Optional function that weights the results, for example 
                            'tonality' function would weight the onsets by their tonal stability 
                             values in addition to note durations. 
 Output:  
 AC = values of autocorrelation function between lags 0 ... 8 quarter notes  
  
 Reference:  
   Brown, J. (1992). Determination of meter of musical scores by  
 autocorrelation. Journal of the acoustical society of America, 94 (4), 1953-1957.  
   Parncutt, R. (1994). A perceptual model of pulse salience and metrical 
            accent in musical rhythms. Music Perception, 11(4), 409-464. 
   Toiviainen, P. & Eerola, T. (2004). The role of accent 
periodicities in meter induction:  
        a classification study, In x (Ed.), Proceedings of the ICMPC8 (p. xxx-xxx). xxx:xxx. 

 
 

onsetdist 
Function synopsis 

Distribution of onset times within a measure  
Function syntax 

dist = onsetdist(nmat, nbeats,<fig>) 
Function comments 
 Returns the distribution of onset times within a measure with  
 a length of NBEATS  
  
 Input arguments:  
 NMAT = notematrix  
 NBEATS = beats per measure  
       FIG (Optional) = Figure flag (1=figure, 0=no figure) 



81 CHAPTER 5 – FUNCTION REFERENCE ■ 
 

■                           MIDI Toolbox                           ■ 

 Output:  
 DIST = distribution of onset times  

 
 

onsetwindow 
Function synopsis 

Onset time based windowing  
Function syntax 

nm = onsetwindow(nmat,mintime,maxtime,<timetype>) 
Function comments 
 Returns the notes in NMAT whose onset times satisfy  
 MINTIME < onsettime[beats/secs](NMAT) <= MAXTIME  
  
 Input arguments:  
 NMAT = notematrix  
 MINTIME = minimum limit of the window in beats (default) or secs  
 MAXTIME = maximum limit of the window in beats (default) or secs  
  TIMETYPE = time representation, 'beat' (default) or 'sec' 
  
Output:  
 NM = notematrix containing the notes of NMAT whose onsets  
 are within the window  

 
 

pcdist1 
Function synopsis 

Pitch-class distribution weighted by note durations  
Function syntax 

pcd = pcdist1(nmat) 
Function comments 
 Calculates the pitch-class distribution of NMAT weighted by note durations. The note  
 durations are based on duration in seconds that are modified according to Parncutt's  
 durational accent model (1994).  
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 PCD = 12-component vector listing the probabilities of  
  pitch-classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, B).  
  
 Example: pcd = pcdist1(nmat)  
  

See also 
plotdist, refstat , durdist1, durdist2, ivdist1, ivdist2 
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pcdist2 
Function synopsis 

2nd order pitch-class distribution  
Function syntax 

pcd = pcdist2(nmat) 
Function comments 
 Calculates the 2nd order pitch-class distribution of NMAT  
 weighted by note durations. The note durations are based on  
 duration in seconds that are modified according to Parncutt's  
 durational accent model (1994).  
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 PCD = 2nd order pitch-class distribution of NMAT  
 12 * 12 matrix  
 e.g. PCD(1,2) = probability of transitions from C to C#  
  

See also 
plotdist, refstat , durdist1, durdist2, ivdist1, ivdist2 

 
 

perchannel 
Function synopsis 

Channel-by-channel analysis of notematrix using a specified 
function. Works only with functions returning either scalar or row 
vector. 

Function syntax 
chout = perchannel(nmat,varargin) 

Function comments 
 Channel-by-channel analysis of notematrix using a specified function  
  
 Input argument:  
 NMAT = note matrix  
 FUNC = function (string)  
  
 Output:  
 chout = scalar or row vector for each channel. Size depends on the FUNC. 
  
 Example:  
 p=perchannel(nmat,'pcdist1');   
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See also 
getmidich, mchannels  

 
 

pianoroll 
Function synopsis 

Plot pianoroll notation of NMAT  
Function syntax 

pianoroll(nmat,<varargin>)  
Function comments 
 Plots pianoroll notation of NMAT and takes several optional arguments  
 that affect the information displayed.  
  
 Input arguments:  
 NMAT = notematrix  
     VARARGIN = various optional input arguments:  
     'name' = note names for y-axis (default)  
        'num' = MIDI numbers for y-axis  
     'beat'  = beats for x-axis (default)  
        'sec' = seconds for x-axis  
     'vel' = plot note velocities  
        'mh' = plot metric hierarchy  
        Color parameters, e.g. 'g' = Green pitches in pianoroll  
        'hold' = current pianoroll is added to a previous figure  
  
 Output: Figure  
  
 Remarks: Function displays NMATs with multiple channels using different colors  
 for the different channels. A simple optimization of Y-scale labels is used  
 to increase the legibility of the output.  
 Also, the C notes are marked with dotted line in the plot.  
  
 Example 1: Plot pitches and their velocities using seconds as the x-axis  
   pianoroll(nmat,'vel','sec');  
  
 Example 2: Plot two separate melodies into the same figure  
   pianoroll(nmat1,'r'); % 1st melody in red color  
   pianoroll(nmat2,'b','hold'); % 2nd melody in blue color  
  
 Example 3: Plot multichannel NMAT (plot channels using different colors)  
   pianoroll(nmat3,'num'); %  

 
 

playmidi 
Function synopsis 

Creates a temporary MIDI file and plays it using a suitable 
program 
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Function syntax 
q = playmidi(nmat,<tempo>) 

Function comments 
 Creates a temporary MIDI file and plays it using a suitable program  
  
 Input argument:  
 NMAT = Notematrix  
       TEMPO (optional)= tempo (default 120 bpm)  
  
 Output: Opens up MIDI Player and plays temp.mid in the player.  
  
 Remarks: The player depends on the operating system (Macintosh, PC, Linux).  
 In Windows or MacOS X, the player is defined by definemidiplayer function. 
 
 Example : playmidi(nmat,145);  
   plays nmat with the tempo 145 beats per minute 

 
 

playsound 
Function synopsis 

Play NMAT using a simple synthesis 
Function syntax 

q = playsound(nmat) 
Function comments 
Create waveform of NMAT using a simple FM synthesis. The default sampling rate is  
8192 Hz and velocities are scaled to have 
a max value of 1 before passing to the fm_synth function.  
 
 Input argument:  
     NMAT = notematrix 
     SYNTHTYPE (Optional) = Synthesis type, either FM synthesis ('fm', default)  
           or Shepard tones ('shepard') 
     FS (optional) = sampling rate (default 8192) 
  
 Output: 
 none (played through SOUNDSC) 
 
Example 1: playsound(laksin); 
Example 2: playsound(laksin,'shepard', 22050);

 
 

plotdist 
Function synopsis 

Plotting of distributions  
Function syntax 

p = plotdist(dist ,<param>)  
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Function comments 
  
 This function creates a graph of note-, interval- or duration  
 distributions or transitions. This purpose of the command is make  
 creating simple figures easier.  
 
 Input arguments:  
 DIST = Distribution of:  
 pitch-classes (12), intervals (25) or durations (9) OR  
 the transitions of the same features;  
 pitch-class transitions (12 x 12), interval transitions (25 x 25), 
 durations transitions (9 x9) or key correlations (24), 
 interval sizes (1x13) or intervals directions (1x12). For the last one, 
%     a simple heuristic is used to distinguish it from the pitch-class distribution. 
 
 PARAM (optional) = color parameters (e.g. 'k' for black  
                                bars or [.1 .4 .9] for specific colors).  
                               For transition plots, use 'hot' or other colormap 
                               definition. Default color is gray in both cases. 
 Output: Figure  
  
 Remarks: The distribution needs to be calculated separately.  
  
 Example: Create note transition figure of laksin MIDI file 
   plotdist(pcdist2(laksin))  

 
 

plothierarchy 
Function synopsis 

Plot metrical hierarchy  
Function syntax 

fig = plothierarchy(nmat)  
Function comments 
 Plots metrical hierarchy based on meter-finding and assigning  
 metrical grid to each note according to its position in the grid.  
 Lerdahl & Jackendoff (1983).  
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 FIG = Figure  
  
 Reference: 
     Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music.  
           Cambridge, MA: MIT Press. 
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plotmelcontour 
Function synopsis 

Plot melodic contour using STEP resolution  
Function syntax 

p = plotmelcontour(nmat,<step>,<meth>,<options>)  
Function comments 
Plot melodic contour using a user-defined resolution. Various other output  
options can be used (VARARGIN). 
 
Input argument: 
    NMAT = notematrix 
    VARARGIN = Various other parameters: 
          STEP (numeric) = resolution (optional), see 'abs' or 'rel' below: 
         'abs' defines the sampling interval in beats (default) 
          rel' defines the number of sampling points 
         'beat' (default) defines the timetype in beats 
           'sec' defines the timetype in seconds 
         COLOR OPTIONS, e.g., 'r:' for red, dotted line... (optional) 
          'ac' for autocorrelation figure (optional). 
             This option plots the contour self-similarity of NMAT.  
             The similarity is based on autocorrelation, where the melodic contour  
             is correlated with a copy of itself. A short duration (approximately one  
             measure) from the beginning is left out in the plot.  
 
 Output:  
 P = Figure  
  
Example 1: plot melodic contour 
             plotmelcontour(laksin,0.1,'abs',':ok'); 
Example 2: plot contour self-similarity 
             plotmelcontour(laksin,0.1,'abs','r','ac'); 

See also 
melcontour 

 
 

quantize 
Function synopsis 

Quantize note onsets and durations of NMAT  
Function syntax 

nm2= quantize(nmat, onsetres, <durres>, <filterres> )  
Function comments 
 Quantize note events in NMAT according to onset resolution  
 (ONSETRES), durations resolution (DURRES) and optionally filter  
 note events shorter than the filter threshold (FILTERRES).  
  
 Input arguments:  
 NMAT = notematrix  
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 ONSETRES = onset threshold for quantization (e.g., quarter note = 1/4).  
         Default value is 1/8 note.  
 DURRES (optional) = duration threshold for quantization. Default is double  
         the value of ONSETRES.  
 FILTERRES (optional) = duration threshold for filtering out notes. For example,  
         to filter out eight notes and shorter notes events, FILTERRES of  
         1/8 can be used.  
  
 Output:  
 NM2 = quantized notematrix  
  
 Example: Quantize NMAT to quarter notes (onsets and durations)  
 and filter out all notes shorter than 1/8 beats  
 nm2 = quantize(nmat, 1/4, 1/4,1/8);  

 
 

readmidi 
Function synopsis 

Conversion of MIDI file to notematrix  
Function syntax 

nmat = readmidi(fn) 
Function comments 
  
 Input argument:  
 FN = name of the MIDI file (string)  
  
 Output:  
 NMAT = notematrix  

See also 
writemidi 

 
 

refstat 
Function synopsis 

Returns reference statistic of melody and associated labels 
specified by STAT  

Function syntax 
[ref, label] = refstat(stat)  

Function comments 
 REFSTAT function returns a selected reference statistic of melody (STAT):  
  
 Input arguments: STAT= any of the following strings:  
        kkmaj = Krumhansl & Kessler (1982) major key profile (tonality)  
        kkmin =  Krumhansl & Kessler (1982) minor key profile (tonality)  
        kkmajt =  Krumhansl & Kessler (1982) major key profile modified by Temperley (1999)  
        kkmint =  Krumhansl & Kessler (1982) minor key profile modified by Temperley (1999)  
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        pc_all = Pitch-Classes in the Essen Collection (ALL songs,  incl. Asian) by Schaffrath (1995)  
        pc_europe_maj = Pitch-classes in Essen Collection (Major songs, not incl. Asian)  
        pc_europe_min = Pitch-classes in Essen Collection (Minor songs, not incl. Asian)  
        iv_all = Intervals from Essen folksong collection  
        ivnd_europe = Intervals (no direction) from Essen col., not incl. Asian)  
        ivudr_europe = Intervals (up, down, repeat) Essen col., not incl. Asian)  
        iv_europe_maj = Interval transitions (Essen col., Major, Non-Asian)  
        ivdia_europe = Interval transitions, diatonic only (Essen col., not incl. Asian)  
        ivdiand_europe = Interval transitions, diatonic only, no direction (Essen col., not incl. Asian)  
        iv2 = Interval transitions (From Essen folksong collection)  (VECTOR)  
        twotone = Pitch-class transitions in Essen Collection (VECTOR)  
        pcdist1essen = Pitch-classen in Essen Collection (All songs, not incl. Asian, N=6231)  
        ivdist1essen = Intervals from Essen folksong collection (not incl. Asian)  
        durdist1essen = Duration distribution (From Essen folksong collection)  
        ivdist2essen = Interval transitions (From Essen folksong collection) (MATRIX)  
        pcdist2essen = Pitch-class transitions (From Essen folksong collection) (MATRIX)  
        durdist2essen = Duration transitions (From Essen folksong collection) (MATRIX)  
        pcdist2classical1 = Tone-transition probabilities from 16000 + classical music themes (Simonton, 
1984)  
        pcdist2classical2 = Frequency of occurrence of melodic intervals by Youngblood (1958)  
        pcdist1schubert = Pitch-class distribution in Schubert pieces (Major key, Knopoff & Hutchinson 
(1983)  
  
 Output: REF = probability vector for each component in the statistic. For example, major key profile 
is:  
 ref=[6.35,2.23,3.48,2.33,4.38,4.09,2.52,5.19,2.39,3.66,2.29,2.88];  
      LABEL = label for each statistic. As above this, would output:  
  'C','C#','D','D#','E','F','F#','G','G#','A','A#','B'  
  
 References:  
 Knopoff, L. & Hutchinson, W. (1983). Entropy as a measure of style:  
       The influence of sample length. Journal of Music Theory, 27, 75-97.  
 Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes  
        in perceived tonal organization in a spatial representation of musical  
        keys. Psychological Review, 89, 334-368.  
 Schaffrath, H. (1995). The Essen Folksong Collection in Kern Format.  
        [computer database] D. Huron (Ed.). Menlo Park, CA: Center for  
        Computer Assisted Research in the Humanities.  
 Simonton, D. K. (1984). Melodic structure and note transition probabilities:  
        A content analysis of 15,618 classical themes. Psychology of  
        Music, 12, 3-16.  
 Temperley, D. (1999). What's Key for Key? The Krumhansl-Schmuckler  
        key-finding algorithm reconsidered. Music Perception, 17, 65-100.  
 Youngblood, J.E. (1958). Style as information. Journal of Music  
       Theory, 2, 24-35.  
  
 Example 1: Get major key profile by Krumshansl & Kessler (1982):  
   major = refstat('kkmaj');  
  
 Example 2: Get interval transition probabilities in the Essen collection and the  
 respective labels for all interval transitions:  
   [inttrans,label] = refstat('ivdist2essen');  

 
 

reftune 
Function synopsis 

Obtain a 'reference' or example tune  
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Function syntax 
nmat = reftune('name',<dur>)  

Function comments 
 Input arguments: NAME= any of the following strings:  
        dowling1 = Dowling (1973) tune 1  
        dowling1 = Dowling (1973) tune 2  
        int1-12 = Hartmann & Johnson (1991)  tunes 1-12  
        probe = Sample probe sequence (demonstrated in the Manual)  
        tritone = 12 random tritone intervals demonstrating the Tritone Paradox (Deutsch, 1991) 
        laksin = Two phrases of a Finnish Folk, "Läksin Minä Kesäyönä"  
   DUR(optional) = duration of tones in target NAME tune  
  
 Output: NMAT = the sequence as a notematrix  
  
 References:  
       Dowling, W. J. (1973). The perception of interleaved melodies,  
             Cognitive Psychology,5, 322-337.  
       Hartmann, W. M., & Johnson, D. (1991). Stream segregation and  
              peripheral channeling. Music Perception, 9(2), 155-184.  
       Deutsch, D. (1991). The tritone paradox: An influence of language  
            on music perception. Music Perception, 8, 335-347. 
       Repp, B. (1994). The tritone paradox and the pitch range of the  
            speaking voice: A dubious connection. Music Perception, 12, 227-255. 

 
 

scale 
Function synopsis 

Scaling of notematrix values  
Function syntax 

nm = scale(nmat,dim,factor) 
Function comments 
 Scales note data in given dimension (time, onset time, or duration)  
  
 Input arguments:  
 NMAT = notematrix  
 DIM = dimension ('time', 'onset', 'dur' or 'vel')  
 FACTOR = amount of scale (must be > 0)  
  
 Output:  
 NM = notematrix containing the scaled version of NMAT  
  
 Examples:  
 nm = scale(nmat,'time',2); % scales time axis by a factor of 2  
 nm = scale(nmat,'dur',0.5); % shortens durations by a factor of 2  
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segmentgestalt 
Function synopsis 

Segmentation algorithm by Tenney & Polansky (1980)  
Function syntax 

[c,s] = segmentgestalt (nmat ,<fig>) 
Function comments 
  Input arguments: 
      NMAT = notematrix 
      FIGURE (optional) = if any second argument given,  
                          a figure is plotted 
 
  Output:  
     C = clang boundaries (binary (0|1) column vector) 
     S = segment boundaries (binary (0|1) column vector) 
     FIG (optionally) = plot pianoroll with dotted lines  
                       corresponding with clang boundaries. 
                      Solid line indicates segment boundaries. 
 References:  
 Tenney, J. & Polansky, L. (1980). Temporal gestalt perception  
     in music. Journal of Music Theory, 24(2), 205–41.  

See also 
segmentprob 

 
 

segmentprob 
Function synopsis 

Estimation of segment boundaries  
Function syntax 

segmentprob(nmat , <thres>,<fig>) 
Function comments 
 Plots a segmentation of NMAT based on Markov probabilities of  
 segment boundaries derived from the Essen collection  
  
 Input arguments:  
   NMAT = notematrix  
   THRES (optional) = segmentation threshold (default = 0.6);  
   FIG (optional) = plot figure (yes=1, no=0, default=0)  
 Output:  
   SEGM = Segment probabilities for note event (row vector) 
   Figure (Optional) showing the pianoroll notation of NMAT in top  
   and estimated segment boundaries with respective probabilities  
   as a stem plot. 

See also 
segmentgestalt 
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setmidiplayer 
Function synopsis 

midiplayer = setmidiplayer(<fullpath>) 
Function syntax 

Define MIDI player program in Windows  
Function comments 
 midiplayer = setmidiplayer(<fullpath>);  
  
  
 Input argument:  
 FULLPATH (optional) = define the full path of your player  
  
 Remarks: Used by the PLAY function.  
  
 Example : midiplayer = setmidiplayer('C:\Program Files\ ...  
               Windows Media Player\mplayer2.exe');  

 

 

settempo 
Function synopsis 

Assigns a new tempo to the NMAT in beats per minute (BPM) 
Function syntax 

y = settempo(nmat,bpm)  
Function comments 
 Assigns a new tempo to the NMAT.  
  
 Input argument:  
 NMAT = notematrix  
 BPM = new tempo (in beats per minute)  
  
 Output:  
 NMATF = new notematrix  

See also 
gettempo 

 
 

setvalues 
Function synopsis 

Sets the chosen notematrix value for every event  
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Function syntax 
nm = setvalues(nmat,dim,val,<timetype>) 

Function comments 
 Sets the chosen notematrix value for every event  
  
 Input arguments:  
 NMAT = notematrix  
 DIM = dimension ('onset', 'dur', 'vel', or 'chan')  
 VAL =  Value  
 TIMETYPE = (optional) time representation, 'beat' (default) or 'sec'  
  
 Output:  
 NM = notematrix containing the scaled version of NMAT  
  
 Examples:  
 nm = setvalues(nmat,'vel',64); % Sets all note velocities to 64  
 nm = setvalues(nmat,'onset',0); % Sets all onset times to zero  
 nm = setvalues(nmat,'dur',1,'sec'); % Sets all note durations to 1 sec  

 
 

shift 
Function synopsis 

Shifting of notematrix values  
Function syntax 

nm = shift(nmat,dim,amount,<timetype>) 
Function comments 
 Shifts note data in given dimension (onset time, duration, or pitch)  
  
 Input arguments:  
 NMAT = notematrix  
 DIM = dimension ('onset', 'dur', 'pitch', 'chan' or 'vel')  
 AMOUNT =  amount of shift  
 TIMETYPE = (optional) time representation, 'beat' (default) or 'sec'  
  
 Output:  
 NM = notematrix containing the shifted version of NMAT  
  
 Examples:  
 nm = shift(nmat,'onset',5); % shifts note onsets 5 beats ahead  
 nm = shift(nmat,'dur',-0.1,'sec'); % shortens durations by 0.1 secs  
 nm = shift(nmat,'pitch',12); %transposes one octave up  

 
 

tessitura 
Function synopsis 

Tessitura (Hippel, 2000)  
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Function syntax 
y = tessitura(nmat)  

Function comments 
 Calculates the tessitura that is based on standard deviation of pitch height.  
 The median range of the melody tends to be favored and thus   
 more expected. Tessitura predicts whether listeners expect tones close  
 to median pitch height (Hippel, 2000).  
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 Y = tessitura value for each tone in NMAT  
 
 Example: y = tessitura(nmat)  
  
 References:  
 von Hippel, P. (2000). Redefining pitch proximity: Tessitura and  
     mobility as constraints on melodic interval size. Music Perception,  
     17 (3), 315-327.  
  

See also 
mobility, narmour 

 
 

tonality 
Function synopsis 

Tonal stability of notes in melody  
Function syntax 

p = tonality(nmat) 
Function comments 
 Function gives the tonal stability ratings for tones in the melody  
 (NMAT) after determining the key mode (minor/major) using the KEYMODE  
 function.  
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 P = tonality values for pitches in NMAT  
  
 Remarks: This function calls the KEYMODE function. 
 
 Reference:  
 Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. 
 New York: Oxford University Press. 
 
 Example: p = tonality(createnmat)  
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See also 
refstat, keymode  

 
 

transpose2c 
Function synopsis 

Transposition to C tonic  
Function syntax 

nmatf = transpose2c(nmat) 
Function comments 
 Transposes NMAT to C major or minor using the Krumhansl-Kessler  
 algorithm. Note that the algorithm may not give reliable results if the  
 NMAT is especially short or has a modulating structure. 
  
 Input argument:  
 NMAT = notematrix  
  
 Output:  
 NMATF = transposed notematrix  
  
 Example: n = transpose2c(nmat);  

 
 

trim 
Function synopsis 

Removal of leading silence  
Function syntax 

nm2 = trim(nmat)  
Function comments 
 Removes potential silence in the beginning of NMAT  
 by shifting the note onsets so that the first onset occur at zero time  
  
 Input arguments:  
 NMAT = notematrix  

 
 

writemidi 
Function synopsis 

Writes a MIDI file from a NMAT  
Function syntax 

n = writemidi(nmat, ofname, <tpq>, <tempo>, <tsig1>, <tsig2>) 
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Function comments 
  
 Creates a MIDI file from a NMAT using various optional parameters 
  
 Input arguments: NMAT = notematrix  
     OFNAME = Output filename (*.mid)  
 TPQ (Optional) = Ticks per quarter note (default 120)  
 TEMPO (Optional) = bpm, beats per minute (default 100)  
 TSIG1&2 (Optional) = Time-signature, e.g. 6/8 -> TSIG1 = 6,  
 TSIG2 = 8 (default 4)  
  
 Output: MIDI file  
  
 Remarks: TEXT2MIDI converter needs to be handled differently in PC and Mac.  
  
 Example: writemidi(a,'demo.mid');  
      creates a file name DEMO.MID from notematrix A with  
      default settings.  
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